Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1098344, 2023.
Article in English | MEDLINE | ID: mdl-36860852

ABSTRACT

Introduction: Triple negative breast cancer (TNBC) is the most aggressive and hard-to-treat subtype of breast cancer, affecting 10-20% of all women diagnosed with breast cancer. Surgery, chemotherapy and hormone/Her2 targeted therapies are the cornerstones of treatment for breast cancer, but women with TNBC do not benefit from these treatments. Although the prognosis is dismal, immunotherapies hold significant promise in TNBC, even in wide spread disease because TNBC is infiltrated with more immune cells. This preclinical study is proposing to optimize an oncolytic virus-infected cell vaccine (ICV) based on a prime-boost vaccination strategy to address this unmet clinical need. Methods: We used various classes of immunomodulators to improve the immunogenicity of whole tumor cells in the prime vaccine, followed by their infection with oncolytic Vesicular Stomatitis Virus (VSVd51) to deliver the boost vaccine. For in vivo studies, we compared the efficacy of a homologous prime-boost vaccination regimen to a heterologous strategy by treating 4T1 tumor bearing BALB/c mice and further by conducting re-challenge studies to evaluate immune memory responses in surviving mice. Due to the aggressive nature of 4T1 tumor spread (akin to stage IV TNBC in human patients), we also compared early surgical resection of primary tumors versus later surgical resection combined with vaccination. Results: In vitro results demonstrated that immunogenic cell death (ICD) markers and pro-inflammatory cytokines were released at the highest levels following treatment of mouse 4T1 TNBC cells with oxaliplatin chemotherapy and influenza vaccine. These ICD inducers also contributed towards higher dendritic cell recruitment and activation. With the top ICD inducers at hand, we observed that treatment of TNBC-bearing mice with the influenza virus-modified prime vaccine followed by VSVd51 infected boost vaccine resulted in the best survival. Furthermore, higher frequencies of both effector and central memory T cells along with a complete absence of recurrent tumors were observed in re-challenged mice. Importantly, early surgical resection combined with prime-boost vaccination led to improved overall survival in mice. Conclusion: Taken together, this novel cancer vaccination strategy following early surgical resection could be a promising therapeutic avenue for TNBC patients.


Subject(s)
Influenza Vaccines , Triple Negative Breast Neoplasms , Humans , Female , Animals , Mice , Triple Negative Breast Neoplasms/therapy , Neoplasm Recurrence, Local , Vaccination , Oncogenes , Immunotherapy
2.
Mol Ther Oncolytics ; 24: 507-521, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35229029

ABSTRACT

A significant proportion of non-muscle invasive bladder cancer cases will progress to muscle invasive disease. Transurethral resection followed by Bacillus Calmette Guerin immunotherapy can reduce this risk, while cystectomy prior to muscle invasion provides the best option for survival. Currently, there are no effective treatments for Bacillus Calmette Guerin refractory disease. A novel oncolytic vesicular stomatitis virus containing the human GM-CSF transgene (VSVd51-hGM-CSF) was rescued and tested as a potential bladder-sparing therapy for aggressive bladder cancer. The existing variant expressing mouse GM-CSF was also used. Measurement of gene expression and protein level alterations of canonical immunogenic cell death associated events on mouse and human bladder cancer cell lines and spheroids showed enhanced release of danger signals and immunogenic factors following infection with VSVd51-m/hGM-CSF. Intravesical instillation of VSVd51-mGM-CSF into MB49 bladder cancer bearing C57Bl/6 mice demonstrated enhanced activation of peripheral and bladder infiltrating effector immune cells, along with improved survival and reduced tumor volume. Importantly, virus-mediated anti-tumor immunity was recapitulated in bladder cancer patient-derived organoids. These results suggest that VSVd51-hGM-CSF is a promising viro/immunotherapy that could benefit bladder cancer patients.

4.
BMC Cancer ; 19(1): 823, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31429730

ABSTRACT

BACKGROUND: Natural killer (NK) cell dysfunction following cancer surgery has been shown to promote metastases. Recent studies demonstrate an emerging role for lipids in the modulation of NK cell innate responses. However, the mechanisms involved in lipid modulation of NK cell postoperative anti-tumor function are unknown. This current study will determine whether the lipid accumulation via scavenger receptors on NK cells is responsible for the increase in postoperative metastasis. METHODS: Lipid content in mouse and human NK cells was evaluated by flow cytometry. NK cell scavenger receptor (SR) expression was measured by microarray analysis, validated by qRT-PCR and flow cytometry. NK cell ex vivo and in vivo tumor killing was measured by chromium-release and adoptive transfer assays, respectively. The mediating role of surgery-expanded granulocytic myeloid derived suppressor cells (gMDSC) in SR induction on NK cells was evaluated using co-culture assays. RESULTS: NK cells in surgery-treated mice demonstrated increased lipid accumulation, which occurred via up-regulation of MSR1, CD36 and CD68. NK cells with high lipid content had diminished ability to lyse tumor targets ex vivo. Adoptive transfer of lipid-laden NK cells into NK cell-deficient mice were unable to protect against a lung tumor challenge. Granulocytic MDSC from surgery-treated mice increased SR expression on NK cells. Colorectal cancer surgical patients showed increased NK cell lipid content, higher CD36 expression, decreased granzyme B and perforin production in addition to reduced cytotoxicity in the postoperative period. CONCLUSIONS: Postoperative lipid accumulation promotes the formation of metastases by impairing NK cell function in both preclinical surgical models and human surgical colorectal cancer patient samples. Understanding and targeting the mechanisms underlying lipid accumulation in innate immune NK cells can improve prognosis in cancer surgical patients.


Subject(s)
Colorectal Neoplasms/metabolism , Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Palmitic Acids/metabolism , Adoptive Transfer , Animals , Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , CD36 Antigens/genetics , Colorectal Neoplasms/surgery , Disease Models, Animal , Female , Granzymes/metabolism , Humans , K562 Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Perforin/metabolism , Postoperative Period , Receptors, Scavenger/genetics , Scavenger Receptors, Class A/genetics
5.
Viruses ; 11(5)2019 05 11.
Article in English | MEDLINE | ID: mdl-31083491

ABSTRACT

Oncolytic viruses (OVs) are a form of immunotherapy that release tumor antigens in the context of highly immunogenic viral signals following tumor-targeted infection and destruction. Emerging preclinical and clinical evidence suggests that this in situ vaccine effect is critical for successful viro-immunotherapy. In this review, we discuss the application of OV as an infected cell vaccine (ICV) as one method of enhancing the potency and breadth of anti-tumoral immunity. We focus on understanding and manipulating the critical role of natural killer (NK) cells and their interactions with other immune cells to promote a clinical outcome. With a synergistic tumor killing and immune activating mechanism, ICVs represent a valuable new addition to the cancer fighting toolbox with the potential to treat malignant disease.


Subject(s)
Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Killer Cells, Natural/immunology , Neoplasms/therapy , Humans , Immunotherapy , Neoplasms/immunology , Oncolytic Virotherapy , Oncolytic Viruses/immunology
6.
Mutat Res ; 800-802: 1-7, 2017 08.
Article in English | MEDLINE | ID: mdl-28412438

ABSTRACT

Trinucleotide repeats are involved in various neurodegenerative diseases and are highly unstable both in dividing or non-dividing cells. In Huntington disease (HD), the age of onset of symptoms is inversely correlated to the number of CAG repeats within exon 1 of the HTT gene. HD shows paternal anticipation as CAG repeats are increased during spermatogenesis. CAG expansion were indeed found to be generated during the chromatin remodeling in spermatids where most histones are evicted and replaced by protamines. This process involves striking change in DNA topology since free supercoils must be eliminated. Using an in vitro CAG repeat reporter assay and a highly active nuclear extracts from spermatids, we demonstrate that free negative supercoils result in CAG TNR expansion at a stabilized hairpin. We also suggest a possible role for protamines in promoting localized torsional stress and consequently TNR expansion. The transient increase in torsional stress during spermiogenesis may therefore provide an ideal context for the generation of such secondary DNA structures leading to the paternal anticipation of trinucleotidic diseases.


Subject(s)
DNA, Superhelical/genetics , Spermatids/metabolism , Torsion, Mechanical , Trinucleotide Repeats , Animals , Cannabidiol/analogs & derivatives , Cannabidiol/pharmacology , Chromatin Assembly and Disassembly/genetics , DNA Topoisomerases, Type II/metabolism , Exons , Histones/genetics , Histones/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Male , Mice , Protamines/metabolism , Reproducibility of Results , Spermatogenesis/genetics , Topoisomerase II Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...