Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 11(5): e0005246, 2017 May.
Article in English | MEDLINE | ID: mdl-28510608

ABSTRACT

BACKGROUND: The debilitating human disease schistosomiasis is caused by infection with schistosome parasites that maintain a complex lifecycle alternating between definitive (human) and intermediate (snail) hosts. While much is known about how the definitive host responds to schistosome infection, there is comparably less information available describing the snail's response to infection. METHODOLOGY/PRINCIPLE FINDINGS: Here, using information recently revealed by sequencing of the Biomphalaria glabrata intermediate host genome, we provide evidence that the predicted core snail DNA methylation machinery components are associated with both intra-species reproduction processes and inter-species interactions. Firstly, methyl-CpG binding domain protein (Bgmbd2/3) and DNA methyltransferase 1 (Bgdnmt1) genes are transcriptionally enriched in gonadal compared to somatic tissues with 5-azacytidine (5-AzaC) treatment significantly inhibiting oviposition. Secondly, elevated levels of 5-methyl cytosine (5mC), DNA methyltransferase activity and 5mC binding in pigmented hybrid- compared to inbred (NMRI)- B. glabrata populations indicate a role for the snail's DNA methylation machinery in maintaining hybrid vigour or heterosis. Thirdly, locus-specific detection of 5mC by bisulfite (BS)-PCR revealed 5mC within an exonic region of a housekeeping protein-coding gene (Bg14-3-3), supporting previous in silico predictions and whole genome BS-Seq analysis of this species' genome. Finally, we provide preliminary evidence for parasite-mediated host epigenetic reprogramming in the schistosome/snail system, as demonstrated by the increase in Bgdnmt1 and Bgmbd2/3 transcript abundance following Bge (B. glabrata embryonic cell line) exposure to parasite larval transformation products (LTP). CONCLUSIONS/SIGNIFICANCE: The presence of a functional DNA methylation machinery in B. glabrata as well as the modulation of these gene products in response to schistosome products, suggests a vital role for DNA methylation during snail development/oviposition and parasite interactions. Further deciphering the role of this epigenetic process during Biomphalaria/Schistosoma co-evolutionary biology may reveal key factors associated with disease transmission and, moreover, enable the discovery of novel lifecycle intervention strategies.


Subject(s)
Biomphalaria/genetics , Biomphalaria/parasitology , DNA Methylation , Host-Parasite Interactions , Schistosoma mansoni/physiology , Animals , Azacitidine/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA-Binding Proteins/genetics , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic , Gene Expression Profiling , Humans , Oviposition/drug effects , Phylogeny , Schistosomiasis mansoni/parasitology
2.
J Biotechnol ; 161(3): 206-12, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-22796095

ABSTRACT

This study reports characteristics of different derivatives produced between CelA, a major endoglucanase of Clostridium thermocellum and carbohydrate binding domain of family 3a (CBM3a). In addition to the native form of the endoglucanase containing catalytic and dockerin domains (CelA-CD), its derivatives consisting of catalytic domain without dockerin domain (CelA-C), catalytic domain linked with the binding domain at N-, C- and both termini (CelA-BC, CelA-CB and CelA-BCB, respectively), two catalytic domains cloned in tandem (CelA-CC) and two catalytic domains intervened by a binding domain (CelA-CBC) were expressed in Escherichia coli at levels of 40, 43, 28, 30, 20, 20 and 10%, respectively of the total cell proteins. Specific activities of CelA-CD, CelA-C, CelA-BC, CelA-CB, CelA-CC, CelA-BCB and CelA-CBC against carboxymethyl cellulose (CMC) were 8.1, 7.0, 12.1, 8.5, 11.8, 10.2 and 23.5Umg(-1) enzyme while activities against pre-treated bagasse were 490, 250, 1400, 600, 810, 710 and 2270µmoles reducing sugars released per µmole of the enzyme, respectively, under the assay conditions used. Thus the activities of CelA-BC and CelA-CBC showed nearly 3- and 5-fold increase against pre-treated bagasse as compared to that of the native form of the enzyme, CelA-CD. Molecular modeling studies using MODELLER show that the binding residues of CBM3a and the active site residues of the catalytic domain are more favorably oriented for binding and hydrolysis of the polysaccharide in the case of CelA-BC as compared to those in CelA-CB, which corresponds with higher activity of the former.


Subject(s)
Cellulase/chemistry , Cellulase/metabolism , Clostridium thermocellum/enzymology , Receptors, Cell Surface/chemistry , Carboxymethylcellulose Sodium/metabolism , Catalytic Domain , Cloning, Molecular , DNA, Recombinant/genetics , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Mutant Proteins/metabolism , Plasmids/genetics , Polymerase Chain Reaction , Solubility , Structure-Activity Relationship , Substrate Specificity , Temperature
3.
J Recept Signal Transduct Res ; 31(1): 53-65, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20822478

ABSTRACT

The innate immune system uses inflammation to respond to infection of humans by various parasitic organisms and in some individuals can produce a hyperinflammatory response to infection by the human malaria parasites Plasmodium falciparum and vivax, leading to a more severe form of the disease-cerebral malaria (CM). Toll-like receptors (TLRs) 2 and 4 and members of its signaling pathway, including myeloid differentiation primary response protein (MyD88), MyD88 adapter-like protein (MAL) and suppressor of cytokine signaling 1 (SOCS1), are involved in this inflammatory response. A number of studies have suggested a possible role for MAL in developing CM and that modulating the behavior of MAL may prevent such complications. Mutagenesis studies have suggested that MAL becomes active after phosphorylation of tyrosines and the computational studies presented here characterize the possible roles of two tyrosines-Tyr86 and Tyr106-in MAL activity. The effects of phosphorylation on the structure of MAL and on its binding with two binding partners MyD88 and SOCS1 are studied here. The results suggest that phosphorylation of Tyr86 leads to conformational changes in the BB loop of MAL, and this conformational switch forms the interface for binding with MyD88. Similarly, our results suggest that phosphorylation of Tyr106 contributes to the stability of MAL-MyD88 dimer formation, and may form a possible binding site for SOCS1. Thus, our study supports roles for tyrosines 86 and 106 in signaling pathways involving MAL, and hence as potential drug targets against hyperinflammatory response to infection by Plasmodium falciparum and vivax.


Subject(s)
Computational Biology/methods , Inflammation/parasitology , Malaria/parasitology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Phosphotyrosine/metabolism , Plasmodium/physiology , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Amino Acid Sequence , Animals , Humans , Inflammation/metabolism , Malaria/metabolism , Molecular Dynamics Simulation , Molecular Sequence Data , Parasites/physiology , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Static Electricity , Structure-Activity Relationship , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...