Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 3): 61-69, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36862094

ABSTRACT

Acetyl coenzyme A (acetyl-CoA) is a reactive metabolite that nonproductively hydrolyzes in a number of enzyme active sites in the crystallization time frame. In order to elucidate the enzyme-acetyl-CoA interactions leading to catalysis, acetyl-CoA substrate analogs are needed. One possible analog for use in structural studies is acetyl-oxa(dethia)CoA (AcOCoA), in which the thioester S atom of CoA is replaced by an O atom. Here, structures of chloramphenicol acetyltransferase III (CATIII) and Escherichia coli ketoacylsynthase III (FabH) from crystals grown in the presence of partially hydrolyzed AcOCoA and the respective nucleophile are presented. Based on the structures, the behavior of AcOCoA differs between the enzymes, with FabH reacting with AcOCoA and CATIII being unreactive. The structure of CATIII reveals insight into the catalytic mechanism, with one active site of the trimer having relatively clear electron density for AcOCoA and chloramphenicol and the other active sites having weaker density for AcOCoA. One FabH structure contains a hydrolyzed AcOCoA product oxa(dethia)CoA (OCoA), while the other FabH structure contains an acyl-enzyme intermediate with OCoA. Together, these structures provide preliminary insight into the use of AcOCoA for enzyme structure-function studies with different nucleophiles.


Subject(s)
Escherichia coli , Acetyl Coenzyme A , Chloramphenicol O-Acetyltransferase , Crystallography, X-Ray , Catalysis , Escherichia coli/genetics
2.
ACS Chem Biol ; 18(1): 49-58, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36626717

ABSTRACT

Fatty acid and polyketide biosynthetic enzymes exploit the reactivity of acyl- and malonyl-thioesters for catalysis. A prime example is FabH, which initiates fatty acid biosynthesis in many bacteria and plants. FabH performs an acyltransferase reaction with acetyl-CoA to generate an acetyl-S-FabH acyl-enzyme intermediate and subsequent decarboxylative Claisen-condensation with a malonyl-thioester carried by an acyl carrier protein (ACP). We envision that crystal structures of FabH with substrate analogues can provide insight into the conformational changes and enzyme/substrate interactions underpinning the distinct reactions. Here, we synthesize acetyl/malonyl-CoA analogues with esters or amides in place of the thioester and characterize their stability and behavior as Escherichia coli FabH substrates or inhibitors to inform structural studies. We also characterize the analogues with mutant FabH C112Q that mimics the acyl-enzyme intermediate allowing dissection of the decarboxylation reaction. The acetyl- and malonyl-oxa(dethia)CoA analogues undergo extremely slow hydrolysis in the presence of FabH or the C112Q mutant. Decarboxylation of malonyl-oxa(dethia)CoA by FabH or C112Q mutant was not detected. The amide analogues were completely stable to enzyme activity. In enzyme assays with acetyl-CoA and malonyl-CoA (rather than malonyl-ACP) as substrates, acetyl-oxa(dethia)CoA is surprisingly slightly activating, while acetyl-aza(dethia)CoA is a moderate inhibitor. The malonyl-oxa/aza(dethia)CoAs are inhibitors with Ki's near the Km of malonyl-CoA. For comparison, we determine the FabH catalyzed decomposition rates for acetyl/malonyl-CoA, revealing some fundamental catalytic traits of FabH, including hysteresis for malonyl-CoA decarboxylation. The stability and inhibitory properties of the substrate analogues make them promising for structure-function studies to reveal fatty acid and polyketide enzyme/substrate interactions.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Polyketides , Acetyl Coenzyme A/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Acyl Carrier Protein/chemistry , Malonyl Coenzyme A/metabolism , Fatty Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...