Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20215, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980454

ABSTRACT

Sonodynamic therapy (SDT) is currently on critical path for glioblastoma therapeutics. SDT is a non-invasive approach utilising focused ultrasound to activate photosensitisers like 5-ALA to impede tumour growth. Unfortunately, the molecular mechanisms underlying the therapeutic functions of SDT remain enigmatic. This is primarily due to the lack of intricately optimised instrumentation capable of modulating SDT delivery to glioma cells in vitro. Consequently, very little information is available on the effects of SDT on glioma stem cells which are key drivers of gliomagenesis and recurrence. To address this, the current study has developed and validated an automated in vitro SDT system to allow the application and mapping of focused ultrasound fields under varied exposure conditions and setup configurations. The study optimizes ultrasound frequency, intensity, plate base material, thermal effect, and the integration of live cells. Indeed, in the presence of 5-ALA, focused ultrasound induces apoptotic cell death in primary patient-derived glioma cells with concurrent upregulation of intracellular reactive oxygen species. Intriguingly, primary glioma stem neurospheres also exhibit remarkably reduced 3D growth upon SDT exposure. Taken together, the study reports an in vitro system for SDT applications on tissue culture-based disease models to potentially benchmark the novel approach to the current standard-of-care.


Subject(s)
Glioblastoma , Glioma , Ultrasonic Therapy , Humans , Glioblastoma/pathology , Aminolevulinic Acid/pharmacology , Glioma/pathology , Apoptosis , Reactive Oxygen Species/metabolism , Cell Line, Tumor
2.
BMJ Case Rep ; 16(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37857539

ABSTRACT

Posterior fossa ependymomas (PFEs) are designated histologically as low-grade neoplasms. Despite being characterised as benign, cases of metastasis have been reported only a few times with the patients concurrently diagnosed with the primary tumour. Interval drop metastasis or spontaneous second distal tumours are extremely rare and, in most cases, are diagnosed within a few months of primary tumour resection. Here, we report a patient with a grade 2 paediatric PFE exhibiting a 20-year interval to a second sacral ependymoma. The patient was initially diagnosed with a PFE at the age of 10 years and underwent tumour resection and postoperative radiotherapy. In their late 20s, the patient presented with basilar artery occlusion complicated by life-threatening epistaxis. Post-thrombolysis, the patient presented with a large sacral grade 1 myxopapillary ependymoma with cauda equina syndrome-like symptoms. Here, we present a rare case of two ependymomas with a 20-year interval in the same patient with compounding comorbidities.


Subject(s)
Ependymoma , Spinal Cord Neoplasms , Humans , Child , Ependymoma/diagnosis , Ependymoma/surgery , Ependymoma/pathology , Magnetic Resonance Imaging , Neoplasm Recurrence, Local/surgery , Spinal Cord Neoplasms/complications
3.
Biosci Rep ; 43(1)2023 01 31.
Article in English | MEDLINE | ID: mdl-36622366

ABSTRACT

Preserving proteostasis is a major survival mechanism for cancer. Dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is a key oncogenic kinase that directly activates the transcription factor heat-shock factor 1 (HSF1) and the 26S proteasome. Targeting DYRK2 has proven to be a tractable strategy to target cancers sensitive to proteotoxic stress; however, the development of HSF1 inhibitors remains in its infancy. Importantly, multiple other kinases have been shown to redundantly activate HSF1 that promoted ideas to directly target HSF1. The eventual development of direct HSF1 inhibitor KRIBB11 suggests that the transcription factor is indeed a druggable target. The current study establishes that concurrent targeting of HSF1 and DYRK2 can indeed impede cancer by inducing apoptosis faster than individual targetting. Furthermore, targeting the DYRK2-HSF1 axis induces death in proteasome inhibitor-resistant cells and reduces triple-negative breast cancer (TNBC) burden in ectopic and orthotopic xenograft models. Together the data indicate that cotargeting of kinase DYRK2 and its substrate HSF1 could prove to be a beneficial strategy in perturbing neoplastic malignancies.


Subject(s)
Neoplasms , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Phosphorylation , Gene Expression Regulation , Proteasome Inhibitors/pharmacology
4.
RSC Adv ; 12(37): 23889-23897, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36093229

ABSTRACT

We report a one-pot two-step synthesis of a bioactive 6-amino-2-pyridone-3,5-dicarbonitrile derivative using natural product catalysts betaine and guanidine carbonate. Anti-cancer bioactivity was observed in specific molecules within the library of 16 derivatives. Out of the compounds, 5o had the most potent anti-cancer activity against glioblastoma cells and was selected for further study. Compound 5o showed anti-cancer properties against liver, breast, lung cancers as well as primary patient-derived glioblastoma cell lines. Furthermore, 5o in combination with specific clinically relevant small molecule inhibitors induced enhanced cytotoxicity in glioblastoma cells. Through our current work, we establish a promising 6-amino-2-pyridone-3,5-dicarbonitrile based lead compound with anti-cancer activity either on its own or in combination with specific clinically relevant small molecule kinase and proteasome inhibitors.

5.
Ann Med ; 54(1): 2549-2561, 2022 12.
Article in English | MEDLINE | ID: mdl-36120909

ABSTRACT

A series of N-(4-chlorophenyl) substituted pyrano[2,3-c]pyrazoles was synthesised and screened for their potential to inhibit kinases and exhibit anticancer activity against primary patient-derived glioblastoma 2D cells and 3D neurospheres. A collection of 10 compounds was evaluated against glioma cell lines, with compound 4j exhibiting promising glioma growth inhibitory properties. Compound 4j was screened against 139 purified kinases and exhibited low micromolar activity against kinase AKT2/PKBß. AKT signalling is one of the main oncogenic pathways in glioma and is often targeted for novel therapeutics. Indeed, AKT2 levels correlated with glioma malignancy and poorer patient survival. Compound 4j inhibited the 3D neurosphere formation in primary patient-derived glioma stem cells and exhibited potent EC50 against glioblastoma cell lines. Although exhibiting potency against glioma cells, 4j exhibited significantly less cytotoxicity against non-cancerous cells even at fourfold-fivefold the concentration. Herein we establish a novel biochemical kinase inhibitory function for N-(4-chlorophenyl) substituted pyrano[2,3-c]pyrazoles and further report their anti-glioma activity in vitro for the first time.KEY MESSAGEAnti-glioma pyrano[2,3-c]pyrazole 4j inhibited the 3D neurosphere formation in primary patient-derived glioma stem cells. 4j also displayed PKBß/AKT2 inhibitory activity. 4j is nontoxic towards non-cancerous cells.


Subject(s)
Glioblastoma , Glioblastoma/drug therapy , Humans , Proto-Oncogene Proteins c-akt/metabolism , Pyrazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...