Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(8): 087002, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36898094

ABSTRACT

We experimentally investigate the stochastic phase dynamics of planar Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs) defined in epitaxial InAs/Al heterostructures, and characterized by a large ratio of Josephson energy to charging energy. We observe a crossover from a regime of macroscopic quantum tunneling to one of phase diffusion as a function of temperature, where the transition temperature T^{*} is gate-tunable. The switching probability distributions are shown to be consistent with a small shunt capacitance and moderate damping, resulting in a switching current which is a small fraction of the critical current. Phase locking between two JJs leads to a difference in switching current between that of a JJ measured in isolation and that of the same JJ measured in an asymmetric SQUID loop. In the case of the loop, T^{*} is also tuned by a magnetic flux.

2.
Nat Electron ; 5(2): 71-77, 2022.
Article in English | MEDLINE | ID: mdl-35310295

ABSTRACT

Recent experiments have suggested that superconductivity in metallic nanowires can be suppressed by the application of modest gate voltages. The source of this gate action has been debated and either attributed to an electric-field effect or to small leakage currents. Here we show that the suppression of superconductivity in titanium nitride nanowires on silicon substrates does not depend on the presence or absence of an electric field at the nanowire, but requires a current of high-energy electrons. The suppression is most efficient when electrons are injected into the nanowire, but similar results are obtained when electrons are passed between two remote electrodes. This is explained by the decay of high-energy electrons into phonons, which propagate through the substrate and affect superconductivity in the nanowire by generating quasiparticles. By studying the switching probability distribution of the nanowire, we also show that high-energy electron emission leads to a much broader phonon energy distribution compared with the case where superconductivity is suppressed by Joule heating near the nanowire.

3.
Nat Commun ; 12(1): 1266, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33627661

ABSTRACT

Recent experiments with metallic nanowires devices seem to indicate that superconductivity can be controlled by the application of electric fields. In such experiments, critical currents are tuned and eventually suppressed by relatively small voltages applied to nearby gate electrodes, at odds with current understanding of electrostatic screening in metals. We investigate the impact of gate voltages on superconductivity in similar metal nanowires. Varying materials and device geometries, we study the physical mechanism behind the quench of superconductivity. We demonstrate that the transition from superconducting to resistive state can be understood in detail by tunneling of high-energy electrons from the gate contact to the nanowire, resulting in quasiparticle generation and, at sufficiently large currents, heating. Onset of critical current suppression occurs below gate currents of 100fA, which are challenging to detect in typical experiments.

4.
Nat Commun ; 11(1): 3212, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32587242

ABSTRACT

Majorana zero modes are leading candidates for topological quantum computation due to non-local qubit encoding and non-abelian exchange statistics. Spatially separated Majorana modes are expected to allow phase-coherent single-electron transport through a topological superconducting island via a mechanism referred to as teleportation. Here we experimentally investigate such a system by patterning an elongated epitaxial InAs-Al island embedded in an Aharonov-Bohm interferometer. With increasing parallel magnetic field, a discrete sub-gap state in the island is lowered to zero energy yielding persistent 1e-periodic Coulomb blockade conductance peaks (e is the elementary charge). In this condition, conductance through the interferometer is observed to oscillate in a perpendicular magnetic field with a flux period of h/e (h is Planck's constant), indicating coherent transport of single electrons through the islands, a signature of electron teleportation via Majorana modes.

5.
Phys Rev Lett ; 124(22): 226801, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567899

ABSTRACT

We demonstrate concomitant measurement of phase-dependent critical current and Andreev bound state spectrum in a highly transmissive InAs Josephson junction embedded in a dc superconducting quantum interference device (SQUID). Tunneling spectroscopy reveals Andreev bound states with near unity transmission probability. A nonsinusoidal current-phase relation is derived from the Andreev spectrum, showing excellent agreement with the one extracted from the SQUID critical current. Both measurements are reconciled within a short junction model where multiple Andreev bound states, with various transmission probabilities, contribute to the entire supercurrent flowing in the junction.

6.
Phys Rev Lett ; 121(25): 256803, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608825

ABSTRACT

We present measurements of one-dimensional superconductor-semiconductor Coulomb islands, fabricated by gate confinement of a two-dimensional InAs heterostructure with an epitaxial Al layer. When tuned via electrostatic side gates to regimes without subgap states, Coulomb blockade reveals Cooper-pair mediated transport. When subgap states are present, Coulomb peak positions and heights oscillate in a correlated way with magnetic field and gate voltage, as predicted theoretically, with (anti)crossings in (parallel) transverse magnetic field indicating Rashba-type spin-orbit coupling. Overall results are consistent with a picture of overlapping Majorana zero modes in finite wires.

7.
Phys Rev Lett ; 119(17): 176805, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29219474

ABSTRACT

We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-down lithography and gating. The measurements indicate a hard superconducting gap, ballistic tunneling contact, and in-plane critical fields up to 3 T. Top-down lithography allows complex geometries, branched structures, and straightforward scaling to multicomponent devices compared to structures made from assembled nanowires.

8.
Nano Lett ; 17(2): 1200-1203, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28072541

ABSTRACT

We demonstrate the transfer of the superconducting properties of NbTi, a large-gap high-critical-field superconductor, into an InAs heterostructure via a thin intermediate layer of epitaxial Al. Two device geometries, a Josephson junction and a gate-defined quantum point contact, are used to characterize interface transparency and the two-step proximity effect. In the Josephson junction, multiple Andreev reflections reveal near-unity transparency with an induced gap Δ* = 0.50 meV and a critical temperature of 7.8 K. Tunneling spectroscopy yields a hard induced gap in the InAs adjacent to the superconductor of Δ* = 0.43 meV with substructure characteristic of both Al and NbTi.

9.
Nat Commun ; 7: 12841, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27682268

ABSTRACT

Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e2/h, consistent with theory. The hard-gap semiconductor-superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...