Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Parasitol ; 181(2-4): 180-93, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21684691

ABSTRACT

Derquantel (DQL), a semi-synthetic member of a novel anthelmintic class, the spiroindoles, in combination with abamectin (ABA) [as the combination product STARTECT(®)] is a new entry for the treatment and control of parasites in sheep. The 19 studies reported herein were conducted in Australia, New Zealand, South Africa and the United Kingdom to demonstrate the efficacy of derquantel-abamectin (DQL-ABA) against a broad spectrum of gastrointestinal and respiratory nematodes of sheep, and to support registration of the combination product. Eleven studies were conducted using natural or experimental parasite infections with unknown or unconfirmed resistance, while eight studies utilised isolates/strains with confirmed or well characterised resistance to one or more currently available anthelmintics, including macrocyclic lactones. All studies included DQL-ABA and negative control groups, and in selected studies one or more reference anthelmintic groups were included. In all studies the commercial formulation of DQL-ABA was administered orally at 2mg/kg DQL and 0.2mg/kg ABA; placebo was administered in the same volume as DQL-ABA; and reference anthelmintics were administered as per label recommendations, except in one instance where levamisole was administered at twice the label dose. Infection, necropsy, worm collection and worm counting procedures were performed using standard techniques. Efficacy was calculated based on the percentage reduction in geometric mean worm count relative to negative control for each nematode species and lifecycle stage targeted. Twenty-two isolates/strains used in the eight studies targeting resistant worms had proven resistance: three to one anthelmintic class, eleven to two classes and eight to three or more classes; of these resistant strains, 16 demonstrated resistance to a macrocyclic lactone anthelmintic. Regardless of resistance status in the 19 studies, DQL-ABA controlled a broad range of economically important gastrointestinal and respiratory nematode parasites of sheep, as follows: ≥ 98.9% efficacy against Haemonchus contortus (adult and L4); Teladorsagia circumcincta (adult, L4 and hypobiotic L4); Teladorsagia trifurcata (L4); Trichostrongylus axei (adult and L4); Trichostrongylus colubriformis (adult and L4); Trichostrongylus falculatus (adult); Trichostrongylus rugatus (adult); Trichostrongylus vitrinus (adult and L4); Cooperia curticei (adult and L4); Cooperia oncophora (adult and L4); Nematodirus spathiger (adult); Nematodirus battus (adult); Nematodirus spp. (hypobiotic L4); Strongyloides papillosus (adult); Strongyloides spp. (L4); Chabertia ovina (adult); Oesophagostomum venulosum (adult); Dictyocaulus filaria (adult); and Protostrongylus rufescens (adult); ≥ 97.0% efficacy against Trichuris ovis (adult); and ≥ 95.9% efficacy against T. trifurcata (adult). Derquantel-abamectin is a highly effective combination anthelmintic, which will provide an important new tool for controlling helminths of sheep when used in conjunction with sustainable drenching practices.


Subject(s)
Indoles/administration & dosage , Indoles/therapeutic use , Ivermectin/analogs & derivatives , Nematode Infections/veterinary , Sheep Diseases/drug therapy , Animals , Anthelmintics/administration & dosage , Anthelmintics/therapeutic use , Female , Ivermectin/administration & dosage , Ivermectin/therapeutic use , Larva/drug effects , Male , Molecular Structure , Nematoda/drug effects , Nematode Infections/drug therapy , Sheep , Sheep Diseases/parasitology
2.
Biodegradation ; 14(2): 123-37, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12877467

ABSTRACT

Arsenic is a wide-spread contaminant of soils and sediments, and many watersheds worldwide regularly experience severe arsenic loading. While the toxicity of arsenic to plants and animals is well recognized, the geochemical and biological transformations that alter its bioavailability in the environment are multifaceted and remain poorly understood. This communication provides a brief overview of our current understanding of the biogeochemistry of arsenic in circumneutral freshwater sediments, placing special emphasis on microbial transformations. Arsenic can reside in a number of oxidation states and complex ions. The common inorganic aqueous species at circumneutral pH are the negatively charged arsenates (H2As(V)O4(-) and Has(V)O4(2-)) and zero-charged arsenite (H3As(III)O3(0)). Arsenic undergoes diagenesis in response to both physical and biogeochemical processes. It accumulates in oxic sediments by adsorption on and/or co-precipitation with hydrous iron and manganese oxides. Burial of such sediments in anoxic/suboxic environments favors their reduction, releasing Fe(II), Mn(II) and associated adsorbed/coprecipitated As. Upward advection can translocate these cations and As into the overlying oxic zone where they may reprecipitate. Alternatively, As may be repartitioned to the sulfidic phase, forming precipitates such as arsenopyrite and orpiment. Soluble and adsorbed As species undergo biotic transformations. As(V) can serve as the terminal electron acceptor in the biological oxidation of organic matter, and the limited number of microbes capable of this transformations are diverse in their phylogeny and physiology. Fe(III)-respiring bacteria can mobilize both As(V) and As(III) bound to ferric oxides by the reductive dissolution of iron-arsenate minerals. SO4(2-)-reducing bacteria can promote deposition of As(III) as sulfide minerals via their production of sulfide. A limited number of As(III)-oxidizing bacteria have been identified, some of which couple this reaction to growth. Lastly, prokaryotic and eukaryotic microbes can alter arsenic toxicity either by coupling cellular export to its reduction or by converting inorganic As to organo-arsenical compounds. The degree to which each of these metabolic transformations influences As mobilization or sequestration in different sedimentary matrices remains to be established.


Subject(s)
Arsenic/chemistry , Arsenicals/chemistry , Fresh Water/analysis , Water Pollutants/analysis , Bacteria/chemistry , Bacteria/metabolism , Biodegradation, Environmental , Indicators and Reagents , Iron/chemistry , Methylation , Oxidation-Reduction , Sulfates/chemistry , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...