Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-148692

ABSTRACT

SARS-CoV-2 is a betacoronavirus virus responsible for the COVID-19 pandemic. Here, we determined the X-ray crystal structure of a potent neutralizing monoclonal antibody, CV30, isolated from a patient infected with SARS-CoV-2, in complex with the receptor binding domain (RBD). The structure reveals CV30s epitope overlaps with the human ACE2 receptor binding site thus providing the structural basis for its neutralization by preventing ACE2 binding.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-091298

ABSTRACT

B cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages. Only two antibodies displayed neutralizing activity against SARS-CoV-2 pseudo-virus. The most potent antibody bound the RBD in a manner that prevented binding to the ACE2 receptor, while the other bound outside the RBD. Our study indicates that the majority of antibodies against the viral envelope spike that were generated during the first weeks of COVID-19 infection are non-neutralizing and target epitopes outside the RBD. Antibodies that disrupt the SARS-CoV-2 spike-ACE2 interaction can potently neutralize the virus without undergoing extensive maturation. Such antibodies have potential preventive/therapeutic potential and can serve as templates for vaccine-design. IN BRIEFSARS-CoV-2 infection leads to expansion of diverse B cells clones against the viral spike glycoprotein (S). The antibodies bind S with high affinity despite being minimally mutated. Thus, the development of neutralizing antibody responses by vaccination will require the activation of certain naive B cells without requiring extensive somatic mutation. HighlightsO_LIAnalysis of early B cell response to SARS-CoV-2 spike protein C_LIO_LIMost antibodies target non-neutralizing epitopes C_LIO_LIPotent neutralizing mAb blocks the interaction of the S protein with ACE2 C_LIO_LINeutralizing antibodies are minimally mutated C_LI

SELECTION OF CITATIONS
SEARCH DETAIL
...