Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-487379

ABSTRACT

SARS-CoV-2 infection of the upper airway and the subsequent immune response are early, critical factors in COVID-19 pathogenesis. By studying infection of human biopsies in vitro and in a hamster model in vivo, we demonstrated a transition in tropism from olfactory to respiratory epithelium as the virus evolved. Analyzing each variants revealed that SARS-CoV-2 WA1 or Delta infects a proportion of olfactory neurons in addition to the primary target sustentacular cells. The Delta variant possesses broader cellular invasion capacity into the submucosa, while Omicron displays longer retention in the sinonasal epithelium. The olfactory neuronal infection by WA1 and the subsequent olfactory bulb transport via axon is more pronounced in younger hosts. In addition, the observed viral clearance delay and phagocytic dysfunction in aged olfactory mucosa is accompanied by a decline of phagocytosis related genes. Furthermore, robust basal stem cell activation contributes to neuroepithelial regeneration and restores ACE2 expression post-infection. Together, our study characterized the nasal tropism of SARS-CoV-2 strains, immune clearance, and regeneration post infection. The shifting characteristics of viral infection at the airway portal provides insight into the variability of COVID-19 clinical features and may suggest differing strategies for early local intervention.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-084996

ABSTRACT

The site of SARS-CoV-2 entry and replication critically impacts strategies for COVID-19 diagnosis, transmission mitigation, and treatment. We determined the cellular location of the SARS-CoV-2 target receptor protein, ACE2, in the human upper airway, finding striking enrichment (200-700 folds) in the olfactory neuroepithelium relative to nasal respiratory or tracheal epithelial cells. This cellular tropism of SARS-CoV-2 may underlie its high transmissibility and association with olfactory dysfunction, while suggesting a viral reservoir potentially amenable to intranasal therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...