Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 106(1): 117-125, 2021 01.
Article in English | MEDLINE | ID: mdl-32363610

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does the combination of methazolamide and theophylline reduce symptoms of acute mountain sickness (AMS) and improve aerobic performance in acute hypobaric hypoxia? What is the main finding and its importance? The oral combination of methazolamide (100 BID) and theophylline (300 BID) improved arterial oxygen saturation but did not reduce symptoms of AMS and impaired aerobic performance. We do not recommend this combination of drugs for prophylaxis against the acute negative effects of hypobaric hypoxia. ABSTRACT: A limited number of small studies have suggested that methazolamide and theophylline can independently reduce symptoms of acute mountain sickness (AMS) and, if taken together, can improve aerobic exercise performance in normobaric hypoxia. We performed a randomized, double-blind, placebo-controlled, cross-over study to determine if the combination of oral methazolamide and theophylline could provide prophylaxis against AMS and improve aerobic performance in hypobaric hypoxia (∼4875 m). Volunteers with histories of AMS were screened at low altitude (1650 m) and started combined methazolamide (100 mg BID) and theophylline (300 mg BID) treatment, or placebo, 72 h prior to decompression. Baseline AMS (Lake Louise Questionnaire), blood (haemoglobin, haematocrit), cognitive function, ventilatory and pulse oximetry ( SpO2 ) measures were assessed at low altitude and repeated between 4 and 10 h of exposure to hypobaric hypoxia (PB  = 425 mmHg). Aerobic exercise performance was assessed during a 12.5 km cycling time trial (TT) after 4 h of hypobaric hypoxia. Subjects repeated all experimental procedures after a 3-week washout period. Differences between drug and placebo trials were evaluated using repeated measures ANOVA (α = 0.05). The drugs improved resting SpO2 by ∼4% (P < 0.01), but did not affect the incidence or severity of AMS or cognitive function scores relative to placebo. Subjects' performance on the 12.5 km TT was ∼3% worse when taking the drugs (P < 0.01). The combination of methazolamide and theophylline in the prescribed dosages is not recommended for use at high altitude as it appears to have no measurable effect on AMS and can impair aerobic performance.


Subject(s)
Altitude Sickness/drug therapy , Exercise/physiology , Methazolamide/pharmacology , Theophylline/pharmacology , Acute Disease , Adult , Altitude , Altitude Sickness/physiopathology , Cross-Over Studies , Double-Blind Method , Humans , Hypoxia/physiopathology , Male , Oxygen Saturation/drug effects
2.
Hepatol Commun ; 1(4): 311-325, 2017 06.
Article in English | MEDLINE | ID: mdl-29404461

ABSTRACT

CAT-2003 is a novel conjugate of eicosapentaenoic acid (EPA) and niacin designed to be hydrolyzed by fatty acid amide hydrolase to release EPA inside cells at the endoplasmic reticulum. In cultured liver cells, CAT-2003 blocked the maturation of sterol regulatory element-binding protein (SREBP)-1 and SREBP-2 proteins and decreased the expression of multiple SREBP target genes, including HMGCR and PCSK9. Consistent with proprotein convertase subtilisin/kexin type 9 (PCSK9) reduction, both low-density lipoprotein receptor protein at the cell surface and low-density lipoprotein particle uptake were increased. In apolipoprotein E*3-Leiden mice fed a cholesterol-containing western diet, CAT-2003 decreased hepatic inflammation and steatosis as evidenced by fewer inflammatory cell aggregates in histopathologic sections, decreased nuclear factor kappa B activity in liver lysates, reduced inflammatory gene expression, reduced intrahepatic cholesteryl ester and triglyceride levels, and decreased liver mass. Plasma PCSK9 was reduced and hepatic low-density lipoprotein receptor protein expression was increased; plasma cholesterol and triglyceride levels were lowered. Aortic root segments showed reduction of several atherosclerotic markers, including lesion size, number, and severity. CAT-2003, when dosed in combination with atorvastatin, further lowered plasma cholesterol levels and decreased hepatic expression of SREBP target genes. Conclusion: SREBP inhibition is a promising new strategy for the prevention and treatment of diseases associated with abnormal lipid metabolism, such as atherosclerosis and nonalcoholic steatohepatitis. (Hepatology Communications 2017;1:311-325).

3.
J Med Chem ; 60(1): 458-473, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27976892

ABSTRACT

A depressed autophagy has previously been reported in cystic fibrosis patients with the common F508del-CFTR mutation. This report describes the synthesis and preliminary biological characterization of a novel series of autophagy activators involving fatty acid cysteamine conjugates. These molecular entities were synthesized by first covalently linking cysteamine to docosahexaenoic acid. The resulting conjugate 1 synergistically activated autophagy in primary homozygous F508del-CFTR human bronchial epithelial (hBE) cells at submicromolar concentrations. When conjugate 1 was used in combination with the corrector lumacaftor and the potentiator ivacaftor, it showed an additive effect, as measured by the increase in the chloride current in a functional assay. In order to obtain a more stable form for oral dosing, the sulfhydryl group in conjugate 1 was converted into a functionalized disulfide moiety. The resulting conjugate 5 is orally bioavailable in the mouse, rat, and dog and allows a sustained delivery of the biologically active conjugate 1.


Subject(s)
Autophagy/drug effects , Cysteamine/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Fatty Acids/chemistry , Cysteamine/chemistry , Protein Folding
4.
J Med Chem ; 59(3): 1217-31, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26784936

ABSTRACT

This report describes the synthesis and preliminary biological characterization of novel fatty acid niacin conjugates and fatty acid salicylate conjugates. These molecular entities were created by covalently linking two bioactive molecules, either niacin or salicylic acid, to an omega-3 fatty acid. This methodology allows the simultaneous intracellular delivery of two bioactives in order to elicit a pharmacological response that could not be replicated by administering the bioactives individually or in combination. The fatty acid niacin conjugate 5 has been shown to be an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1. On the other hand, the fatty acid salicylate conjugate 11 has been shown to have a unique anti-inflammatory profile based on its ability to modulate the NF-κB pathway through the intracellular release of the two bioactives.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Fatty Acids/chemistry , Niacin/chemistry , Niacin/pharmacology , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Cell Line , Dogs , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Hydrolysis , Liver/drug effects , Liver/metabolism , Mice , Molecular Structure , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Niacin/administration & dosage , Rats , Rats, Sprague-Dawley , Salicylic Acid/administration & dosage , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 2/metabolism , Structure-Activity Relationship , Tissue Distribution
5.
J Pharmacol Exp Ther ; 328(2): 496-503, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18974362

ABSTRACT

Aldose reductase (AR), an enzyme widely believed to be involved in the aberrant metabolism of glucose and development of diabetic complications, is expressed at low levels in the mouse. We studied whether expression of human AR (hAR), its inhibition with lidorestat, which is an AR inhibitor (ARI), and the presence of streptozotocin (STZ)-induced diabetes altered plasma fructose, mortality, and/or vascular lesions in low-density lipoprotein (LDL) receptor-deficient [Ldlr(-/-)] mice. Mice were made diabetic at 12 weeks of age with low-dose STZ treatment. Four weeks later, the diabetic animals (glucose > 20 mM) were blindly assigned to a 0.15% cholesterol diet with or without ARI. After 4 and 6 weeks, there were no significant differences in body weights or plasma cholesterol, triglyceride, and glucose levels between the groups. Diabetic Ldlr(-/-) mice receiving ARI had plasma fructose levels of 5.2 +/- 2.3 microg/ml; placebo-treated mice had plasma fructose levels of 12.08 +/- 7.4 microg/ml, p < 0.01, despite the induction of fructose-metabolizing enzymes, fructose kinase and adolase B. After 6 weeks, hAR/Ldlr(-/-) mice on the placebo-containing diet had greater mortality (31%, n = 9/26 versus 6%, n = 1/21, p < 0.05). The mortality rate in the ARI-treated group was similar to that in non-hAR-expressing mice. Therefore, diabetic hAR-expressing mice had increased fructose and greater mortality that was corrected by inclusion of lidorestat, an ARI, in the diet. If similar effects are found in humans, such treatment could improve clinical outcome in diabetic patients.


Subject(s)
Aldehyde Reductase/antagonists & inhibitors , Blood/drug effects , Enzyme Inhibitors/pharmacology , Fructose/blood , Indoleacetic Acids/pharmacology , Mortality , Thiazoles/pharmacology , Aldehyde Reductase/metabolism , Animals , Biological Phenomena/drug effects , Blood/metabolism , Blood Glucose/physiology , Fructose/metabolism , Humans , Mice , Mice, Knockout , Streptozocin
6.
Bioorg Chem ; 33(1): 34-44, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15668181

ABSTRACT

Mitogen-activated protein kinase phosphatase-4 (MKP-4) is a dual specificity phosphatase, which acts as a negative regulator of insulin-stimulated pathways. Here, we describe expression, purification, and biochemical characterization of MKP-4. We used the Baculovirus expression system and purification with a combination of affinity and gel filtration chromatography to generate pure MKP-4 and MKP-4/p38 complex. Both MKP-4 and the MKP-4/p38 complex exhibited moderate activity toward the surrogate substrates p-nitrophenyl phosphate, 6, 8-difluoro-4-methylumbelliferyl phosphate, and 3-O-methylfluorescein phosphate. The phosphatase activity could be inhibited by peroxovanate, a potent inhibitor of protein tyrosine phosphatases. We further determined kinetic parameters for the MKP-4 and the MKP-4/p38 by using spectrophotometric and fluorescence intensity methods. The MKP-4/p38 complex was found to provide substantially higher phosphatase activity than MKP-4 alone, similar to what has been shown for MKP-3. Our data allow the configuration of screens for modulators of MKP-4 activity.


Subject(s)
Gene Expression Regulation , Protein Tyrosine Phosphatases , Cells, Cultured , Dual-Specificity Phosphatases , Electrophoresis, Polyacrylamide Gel , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Insulin/metabolism , Kinetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase Phosphatases , Phosphoprotein Phosphatases , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/isolation & purification , Protein Tyrosine Phosphatases/metabolism , Spectrometry, Fluorescence , Substrate Specificity , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...