Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 194(3): 227, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35218441

ABSTRACT

Long-term monitoring enables scientists and managers to track changes in the temporal and spatial distributions of fishes. Given the anthropogenic stressors affecting marine ecosystem health, there is a critical need for robust, comprehensive fish monitoring programs. Citizen science can serve as a meaningful, cost-effective strategy to survey fish communities. We compared data from 13,000 surveys collected over 21 years (1998-2019) by Reef Environmental Education Foundation (REEF) volunteer divers to a published compilation of Salish Sea ichthyofauna collected using an assortment of methods. Volunteer divers observed 138 of 261 recognized species in the Salish Sea, expanded the range of 18 species into additional Salish Sea sub-basins, and identified one species novel to the Salish Sea (Gibbonsia metzi - Striped Kelpfish). To identify Salish Sea fish species that are most suitable to be monitored by underwater visual census and to evaluate confidence in in situ identification, we developed a categorization system based on the likelihood of recreational divers and snorkelers encountering a given species, and on whether identification required a specimen in hand or could be classified to species visually (with or without a high-quality photograph). REEF divers encountered 62% (138 of 223) of the visually detectable species occurring in the region and 85% (102 of 120) of species most likely to be observed by recreational divers. Our findings show that citizen scientists provide valuable monitoring data for over half of the 261 marine and anadromous fish species known to occupy the Salish Sea, many of which are not routinely monitored otherwise.


Subject(s)
Ecosystem , Environmental Monitoring , Animals , Environmental Monitoring/methods , Fishes , Humans , Volunteers
2.
PLoS One ; 11(10): e0163190, 2016.
Article in English | MEDLINE | ID: mdl-27783620

ABSTRACT

Sea star wasting disease devastated intertidal sea star populations from Mexico to Alaska between 2013-15, but little detail is known about its impacts to subtidal species. We assessed the impacts of sea star wasting disease in the Salish Sea, a Canadian / United States transboundary marine ecosystem, and world-wide hotspot for temperate asteroid species diversity with a high degree of endemism. We analyzed roving diver survey data for the three most common subtidal sea star species collected by trained volunteer scuba divers between 2006-15 in 5 basins and on the outer coast of Washington, as well as scientific strip transect data for 11 common subtidal asteroid taxa collected by scientific divers in the San Juan Islands during the spring/summer of 2014 and 2015. Our findings highlight differential susceptibility and impact of sea star wasting disease among asteroid species populations and lack of differences between basins or on Washington's outer coast. Specifically, severe depletion of sunflower sea stars (Pycnopodia helianthoides) in the Salish Sea support reports of major declines in this species from California to Alaska, raising concern for the conservation of this ecologically important subtidal predator.


Subject(s)
Starfish/growth & development , Wasting Syndrome/pathology , Animals , Canada , Conservation of Natural Resources , Ecosystem , Models, Theoretical , Odds Ratio , Seasons , Species Specificity , Wasting Syndrome/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...