Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 593(7859): 379-384, 2021 05.
Article in English | MEDLINE | ID: mdl-34012086

ABSTRACT

Chemical reactions represent a class of quantum problems that challenge both the current theoretical understanding and computational capabilities1. Reactions that occur at ultralow temperatures provide an ideal testing ground for quantum chemistry and scattering theories, because they can be experimentally studied with unprecedented control2, yet display dynamics that are highly complex3. Here we report the full product state distribution for the reaction 2KRb → K2 + Rb2. Ultracold preparation of the reactants allows us complete control over their initial quantum degrees of freedom, whereas state-resolved, coincident detection of both products enables the probability of scattering into each of the 57 allowed rotational state-pairs to be measured. Our results show an overall agreement with a state-counting model based on statistical theory4-6, but also reveal several deviating state-pairs. In particular, we observe a strong suppression of population in the state-pair closest to the exoergicity limit as a result of the long-range potential inhibiting the escape of products. The completeness of our measurements provides a benchmark for quantum dynamics calculations beyond the current state of the art.

2.
Nat Chem ; 13(5): 435-440, 2021 May.
Article in English | MEDLINE | ID: mdl-33380743

ABSTRACT

Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by utilizing the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules we find that the system retains a near-perfect memory of the reactants' nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a reaction with quantum-state resolution. The techniques demonstrated here open up the possibilities to study quantum entanglement between reaction products and ultracold reaction dynamics at the state-to-state level.

3.
Science ; 363(6425): 383-387, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30523079

ABSTRACT

Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.

4.
Science ; 353(6305): 1260-4, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27634529

ABSTRACT

Strong electron correlations lie at the origin of high-temperature superconductivity. Its essence is believed to be captured by the Fermi-Hubbard model of repulsively interacting fermions on a lattice. Here we report on the site-resolved observation of charge and spin correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold atoms. Antiferromagnetic spin correlations are maximal at half-filling and weaken monotonically upon doping. At large doping, nearest-neighbor correlations between singly charged sites are negative, revealing the formation of a correlation hole, the suppressed probability of finding two fermions near each other. As the doping is reduced, the correlations become positive, signaling strong bunching of doublons and holes, in agreement with numerical calculations. The dynamics of the doublon-hole correlations should play an important role for transport in the Fermi-Hubbard model.

5.
Phys Rev Lett ; 116(23): 235301, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341242

ABSTRACT

We report on the site-resolved observation of characteristic states of the two-dimensional repulsive Fermi-Hubbard model, using ultracold ^{40}K atoms in an optical lattice. By varying the tunneling, interaction strength, and external confinement, we realize metallic, Mott-insulating, and band-insulating states. We directly measure the local moment, which quantifies the degree of on-site magnetization, as a function of temperature and chemical potential. Entropies per particle as low as 0.99(6)k_{B} indicate that nearest-neighbor antiferromagnetic correlations should be detectable using spin-sensitive imaging.

6.
Phys Rev Lett ; 114(19): 193001, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024169

ABSTRACT

We realize a quantum-gas microscope for fermionic ^{40}K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement.

7.
Proc Natl Acad Sci U S A ; 110(48): 19194-201, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24255111

ABSTRACT

We present in vivo images of the human brain acquired with an ultralow field MRI (ULFMRI) system operating at a magnetic field B0 ~ 130 µT. The system features prepolarization of the proton spins at Bp ~ 80 mT and detection of the NMR signals with a superconducting, second-derivative gradiometer inductively coupled to a superconducting quantum interference device (SQUID). We report measurements of the longitudinal relaxation time T1 of brain tissue, blood, and scalp fat at B0 and Bp, and cerebrospinal fluid at B0. We use these T1 values to construct inversion recovery sequences that we combine with Carr-Purcell-Meiboom-Gill echo trains to obtain images in which one species can be nulled and another species emphasized. In particular, we show an image in which only blood is visible. Such techniques greatly enhance the already high intrinsic T1 contrast obtainable at ULF. We further present 2D images of T1 and the transverse relaxation time T2 of the brain and show that, as expected at ULF, they exhibit similar contrast. Applications of brain ULFMRI include integration with systems for magnetoencephalography. More generally, these techniques may be applicable, for example, to the imaging of tumors without the need for a contrast agent and to modalities recently demonstrated with T1ρ contrast imaging (T1 in the rotating frame) at fields of 1.5 T and above.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Magnetic Resonance Imaging/methods , Magnetometry/instrumentation , Humans , Models, Theoretical , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...