Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(20): e2300466120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155899

ABSTRACT

The history of Earth's carbon cycle reflects trends in atmospheric composition convolved with the evolution of photosynthesis. Fortunately, key parts of the carbon cycle have been recorded in the carbon isotope ratios of sedimentary rocks. The dominant model used to interpret this record as a proxy for ancient atmospheric CO2 is based on carbon isotope fractionations of modern photoautotrophs, and longstanding questions remain about how their evolution might have impacted the record. Therefore, we measured both biomass (εp) and enzymatic (εRubisco) carbon isotope fractionations of a cyanobacterial strain (Synechococcus elongatus PCC 7942) solely expressing a putative ancestral Form 1B rubisco dating to ≫1 Ga. This strain, nicknamed ANC, grows in ambient pCO2 and displays larger εp values than WT, despite having a much smaller εRubisco (17.23 ± 0.61‰ vs. 25.18 ± 0.31‰, respectively). Surprisingly, ANC εp exceeded ANC εRubisco in all conditions tested, contradicting prevailing models of cyanobacterial carbon isotope fractionation. Such models can be rectified by introducing additional isotopic fractionation associated with powered inorganic carbon uptake mechanisms present in Cyanobacteria, but this amendment hinders the ability to accurately estimate historical pCO2 from geological data. Understanding the evolution of rubisco and the CO2 concentrating mechanism is therefore critical for interpreting the carbon isotope record, and fluctuations in the record may reflect the evolving efficiency of carbon fixing metabolisms in addition to changes in atmospheric CO2.


Subject(s)
Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Carbon Isotopes/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , Carbon/metabolism , Photosynthesis
2.
Sci Rep ; 11(1): 22810, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815415

ABSTRACT

Bacterial nanocompartments, also known as encapsulins, are an emerging class of protein-based 'organelles' found in bacteria and archaea. Encapsulins are virus-like icosahedral particles comprising a ~ 25-50 nm shell surrounding a specific cargo enzyme. Compartmentalization is thought to create a unique chemical environment to facilitate catalysis and isolate toxic intermediates. Many questions regarding nanocompartment structure-function remain unanswered, including how shell symmetry dictates cargo loading and to what extent the shell facilitates enzymatic activity. Here, we explore these questions using the model Thermotoga maritima nanocompartment known to encapsulate a redox-active ferritin-like protein. Biochemical analysis revealed the encapsulin shell to possess a flavin binding site located at the interface between capsomere subunits, suggesting the shell may play a direct and active role in the function of the encapsulated cargo. Furthermore, we used cryo-EM to show that cargo proteins use a form of symmetry-matching to facilitate encapsulation and define stoichiometry. In the case of the Thermotoga maritima encapsulin, the decameric cargo protein with fivefold symmetry preferentially binds to the pentameric-axis of the icosahedral shell. Taken together, these observations suggest the shell is not simply a passive barrier-it also plays a significant role in the structure and function of the cargo enzyme.


Subject(s)
Bacterial Proteins/metabolism , Dinitrocresols/metabolism , Ferritins/metabolism , Flavoproteins/metabolism , Iron/metabolism , Thermotoga maritima/metabolism , Bacterial Proteins/genetics , Cryoelectron Microscopy , Ferritins/chemistry , Ferritins/genetics , Flavoproteins/genetics , Models, Molecular , Thermotoga maritima/genetics
3.
Elife ; 102021 11 09.
Article in English | MEDLINE | ID: mdl-34751132

ABSTRACT

Encapsulin nanocompartments are an emerging class of prokaryotic protein-based organelle consisting of an encapsulin protein shell that encloses a protein cargo. Genes encoding nanocompartments are widespread in bacteria and archaea, and recent works have characterized the biochemical function of several cargo enzymes. However, the importance of these organelles to host physiology is poorly understood. Here, we report that the human pathogen Mycobacterium tuberculosis (Mtb) produces a nanocompartment that contains the dye-decolorizing peroxidase DyP. We show that this nanocompartment is important for the ability of Mtb to resist oxidative stress in low pH environments, including during infection of host cells and upon treatment with a clinically relevant antibiotic. Our findings are the first to implicate a nanocompartment in bacterial pathogenesis and reveal a new mechanism that Mtb uses to combat oxidative stress.


Subject(s)
Mycobacterium tuberculosis/physiology , Organelles/metabolism , Oxidative Stress , Peroxidase/metabolism , Animals , Antitubercular Agents/pharmacology , Macrophages/microbiology , Mice, Inbred BALB C , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Organelles/genetics , Peroxidase/genetics , Pyrazinamide/pharmacology , Tuberculosis/pathology
4.
Elife ; 102021 04 06.
Article in English | MEDLINE | ID: mdl-33821786

ABSTRACT

Prokaryotic nanocompartments, also known as encapsulins, are a recently discovered proteinaceous organelle-like compartment in prokaryotes that compartmentalize cargo enzymes. While initial studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored. Here, we describe a novel encapsulin in the freshwater cyanobacterium Synechococcus elongatus PCC 7942. This nanocompartment is upregulated upon sulfate starvation and encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryo-electron microscopy, we have determined the structure of the nanocompartment complex to 2.2 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery, structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide a foundation for future studies seeking to understand the physiological role of this encapsulin in various bacteria.


Subject(s)
Bacterial Proteins/genetics , Sulfur/metabolism , Synechococcus/genetics , Bacterial Proteins/metabolism , Cryoelectron Microscopy , Synechococcus/metabolism
5.
Genetics ; 212(4): 1063-1073, 2019 08.
Article in English | MEDLINE | ID: mdl-31243057

ABSTRACT

We develop a flexible and computationally efficient approach for analyzing high-throughput chemical genetic screens. In such screens, a library of genetic mutants is phenotyped in a large number of stresses. Typically, interactions between genes and stresses are detected by grouping the mutants and stresses into categories, and performing modified t-tests for each combination. This approach does not have a natural extension if mutants or stresses have quantitative or nonoverlapping annotations (e.g., if conditions have doses or a mutant falls into more than one category simultaneously). We develop a matrix linear model (MLM) framework that allows us to model relationships between mutants and conditions in a simple, yet flexible, multivariate framework. It encodes both categorical and continuous relationships to enhance detection of associations. We develop a fast estimation algorithm that takes advantage of the structure of MLMs. We evaluate our method's performance in simulations and in an Escherichia coli chemical genetic screen, comparing it with an existing univariate approach based on modified t-tests. We show that MLMs perform slightly better than the univariate approach when mutants and conditions are classified in nonoverlapping categories, and substantially better when conditions can be ordered in dosage categories. Therefore, it is an attractive alternative to current methods, and provides a computationally scalable framework for larger and complex chemical genetic screens. A Julia language implementation of MLMs and the code used for this paper are available at https://github.com/janewliang/GeneticScreen.jl and https://bitbucket.org/jwliang/mlm_gs_supplement, respectively.


Subject(s)
Models, Genetic , Mutagenesis , Reverse Genetics/methods , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Gene-Environment Interaction , Linear Models , Reverse Genetics/standards , Software
6.
Nat Cell Biol ; 20(9): 1064-1073, 2018 09.
Article in English | MEDLINE | ID: mdl-30104724

ABSTRACT

Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAFV600E-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including non-V600E oncogenic BRAF, RAS GTPase-activating protein (GAP) NF1 (neurofibromin 1) loss and oncogenic KRAS. Here, we show that targeting the SHP2 phosphatase (encoded by PTPN11) with RMC-4550, a small-molecule allosteric inhibitor, is effective in human cancer models bearing RAS-GTP-dependent oncogenic BRAF (for example, class 3 BRAF mutants), NF1 loss or nucleotide-cycling oncogenic RAS (for example, KRASG12C). SHP2 inhibitor treatment decreases oncogenic RAS/RAF/MEK/ERK signalling and cancer growth by disrupting SOS1-mediated RAS-GTP loading. Our findings illuminate a critical function for SHP2 in promoting oncogenic RAS/MAPK pathway activation in cancers with RAS-GTP-dependent oncogenic BRAF, NF1 loss and nucleotide-cycling oncogenic KRAS. SHP2 inhibition is a promising molecular therapeutic strategy for patients with cancers bearing these oncogenic drivers.


Subject(s)
Biomarkers, Tumor/genetics , Guanosine Triphosphate/metabolism , Mutation , Neoplasms/enzymology , Neoplasms/genetics , Neurofibromin 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Phenotype , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , SOS1 Protein/metabolism , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , raf Kinases/metabolism
7.
Endocrinology ; 159(9): 3143-3157, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29514186

ABSTRACT

Pharmacologic expansion of endogenous ß cells is a promising therapeutic strategy for diabetes. To elucidate the molecular pathways that control ß-cell growth we screened ∼2400 bioactive compounds for rat ß-cell replication-modulating activity. Numerous hit compounds impaired or promoted rat ß-cell replication, including CC-401, an advanced clinical candidate previously characterized as a c-Jun N-terminal kinase inhibitor. Surprisingly, CC-401 induced rodent (in vitro and in vivo) and human (in vitro) ß-cell replication via dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) 1A and 1B inhibition. In contrast to rat ß cells, which were broadly growth responsive to compound treatment, human ß-cell replication was only consistently induced by DYRK1A/B inhibitors. This effect was enhanced by simultaneous glycogen synthase kinase-3ß (GSK-3ß) or activin A receptor type II-like kinase/transforming growth factor-ß (ALK5/TGF-ß) inhibition. Prior work emphasized DYRK1A/B inhibition-dependent activation of nuclear factor of activated T cells (NFAT) as the primary mechanism of human ß-cell-replication induction. However, inhibition of NFAT activity had limited effect on CC-401-induced ß-cell replication. Consequently, we investigated additional effects of CC-401-dependent DYRK1A/B inhibition. Indeed, CC-401 inhibited DYRK1A-dependent phosphorylation/stabilization of the ß-cell-replication inhibitor p27Kip1. Additionally, CC-401 increased expression of numerous replication-promoting genes normally suppressed by the dimerization partner, RB-like, E2F and multivulval class B (DREAM) complex, which depends upon DYRK1A/B activity for integrity, including MYBL2 and FOXM1. In summary, we present a compendium of compounds as a valuable resource for manipulating the signaling pathways that control ß-cell replication and leverage a DYRK1A/B inhibitor (CC-401) to expand our understanding of the molecular pathways that control ß-cell growth.


Subject(s)
Cell Proliferation/drug effects , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Insulin-Secreting Cells/drug effects , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazolones/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Adult , Animals , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p27/drug effects , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Female , Forkhead Box Protein M1/drug effects , Forkhead Box Protein M1/metabolism , Humans , In Vitro Techniques , Kv Channel-Interacting Proteins/drug effects , Kv Channel-Interacting Proteins/metabolism , Male , Middle Aged , NFATC Transcription Factors/drug effects , NFATC Transcription Factors/metabolism , Rats , Repressor Proteins/drug effects , Repressor Proteins/metabolism , Trans-Activators/drug effects , Trans-Activators/metabolism , Transcription Factors/drug effects , Transcription Factors/metabolism , Dyrk Kinases
8.
Crit Rev Biochem Mol Biol ; 52(5): 583-594, 2017 10.
Article in English | MEDLINE | ID: mdl-28635326

ABSTRACT

Compartmentalization is both a fundamental principle of cellular organization and an emerging theme in prokaryotic biology. Work in the past few decades has shown that protein-based organelles called microcompartments enhance the function of encapsulated cargo proteins. More recently, the repertoire of known prokaryotic organelles has expanded beyond microcompartments to include a new class of smaller proteinaceous compartments, termed nanocompartments (also known as encapsulins). Nanocompartments are icosahedral capsids that are smaller and less complex than microcompartments. Encapsulins are formed by a single species of shell protein that self-assembles and typically encapsulates only one type of cargo protein. Significant progress has been made in understanding the structure of nanocompartment shells and the loading of cargo to the interior. Recent analysis has also demonstrated the prevalence of encapsulin genes throughout prokaryotic genomes and documented a large diversity of cargo proteins with a variety of novel functions, suggesting that nanocompartments play an important role in many microbes. Here we review the current understanding of encapsulin structure and function and highlight exciting open questions of physiological significance.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Cell Compartmentation , Organelles , Bacterial Physiological Phenomena , Bacterial Proteins/physiology , Protein Conformation
9.
Proc Natl Acad Sci U S A ; 113(33): E4867-76, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27486247

ABSTRACT

The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.


Subject(s)
Adaptation, Physiological , Synechococcus/physiology , Acclimatization , DNA Replication , Darkness , Gene Expression Regulation, Bacterial , Guanosine Tetraphosphate/analysis , Guanosine Tetraphosphate/physiology , Photosynthesis
10.
Nucleic Acids Res ; 44(19): 9180-9189, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27402158

ABSTRACT

Eukaryotic gene expression requires that RNA Polymerase II (RNAP II) gain access to DNA in the context of chromatin. The C-terminal domain (CTD) of RNAP II recruits chromatin modifying enzymes to promoters, allowing for transcription initiation or repression. Specific CTD phosphorylation marks facilitate recruitment of chromatin modifiers, transcriptional regulators, and RNA processing factors during the transcription cycle. However, the readable code for recruiting such factors is still not fully defined and how CTD modifications affect related families of genes or regional gene expression is not well understood. Here, we examine the effects of manipulating the Y1S2P3T4S5P6S7 heptapeptide repeat of the CTD of RNAP II in Schizosaccharomyces pombe by substituting non-phosphorylatable alanines for Ser2 and/or Ser7 and the phosphomimetic glutamic acid for Ser7. Global gene expression analyses were conducted using splicing-sensitive microarrays and validated via RT-qPCR. The CTD mutations did not affect pre-mRNA splicing or snRNA levels. Rather, the data revealed upregulation of subtelomeric genes and alteration of the repressive histone H3 lysine 9 methylation (H3K9me) landscape. The data further indicate that H3K9me and expression status are not fully correlated, suggestive of CTD-dependent subtelomeric repression mechansims that act independently of H3K9me levels.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation, Fungal , Mutation , Protein Interaction Domains and Motifs , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Cluster Analysis , Gene Expression Profiling , Genes, Fungal , Histones , Methylation , Phosphorylation , Protein Binding , RNA Polymerase II/chemistry , RNA Splicing , RNA, Small Nuclear/metabolism , Reproducibility of Results , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Spliceosomes/metabolism
11.
J Mol Biol ; 428(1): 153-164, 2016 Jan 16.
Article in English | MEDLINE | ID: mdl-26608811

ABSTRACT

Many bacteria employ a protein organelle, the carboxysome, to catalyze carbon dioxide fixation in the Calvin Cycle. Only 10 genes from Halothiobacillus neapolitanus are sufficient for heterologous expression of carboxysomes in Escherichia coli, opening the door to detailed mechanistic analysis of the assembly process of this complex (more than 200MDa). One of these genes, csoS2, has been implicated in assembly but ascribing a molecular function is confounded by the observation that the single csoS2 gene yields expression of two gene products and both display an apparent molecular weight incongruent with the predicted amino acid sequence. Here, we elucidate the co-translational mechanism responsible for the expression of the two protein isoforms. Specifically, csoS2 was found to possess -1 frameshifting elements that lead to the production of the full-length protein, CsoS2B, and a truncated protein, CsoS2A, which possesses a C-terminus translated from the alternate frame. The frameshifting elements comprise both a ribosomal slippery sequence and a 3' secondary structure, and ablation of either sequence is sufficient to eliminate the slip. Using these mutants, we investigated the individual roles of CsoS2B and CsoS2A on carboxysome formation. In this in vivo formation assay, cells expressing only the CsoS2B isoform were capable of producing intact carboxysomes, while those with only CsoS2A were not. Thus, we have answered a long-standing question about the nature of CsoS2 in this model microcompartment and demonstrate that CsoS2B is functionally distinct from CsoS2A in the assembly of α-carboxysomes.


Subject(s)
Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Frameshifting, Ribosomal , Gene Expression Regulation, Bacterial , Halothiobacillus/genetics , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Escherichia coli/genetics , Macromolecular Substances/metabolism , Protein Multimerization
12.
Mol Syst Biol ; 11(1): 780, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25609650

ABSTRACT

Identifying all essential genomic components is critical for the assembly of minimal artificial life. In the genome-reduced bacterium Mycoplasma pneumoniae, we found that small ORFs (smORFs; < 100 residues), accounting for 10% of all ORFs, are the most frequently essential genomic components (53%), followed by conventional ORFs (49%). Essentiality of smORFs may be explained by their function as members of protein and/or DNA/RNA complexes. In larger proteins, essentiality applied to individual domains and not entire proteins, a notion we could confirm by expression of truncated domains. The fraction of essential non-coding RNAs (ncRNAs) non-overlapping with essential genes is 5% higher than of non-transcribed regions (0.9%), pointing to the important functions of the former. We found that the minimal essential genome is comprised of 33% (269,410 bp) of the M. pneumoniae genome. Our data highlight an unexpected hidden layer of smORFs with essential functions, as well as non-coding regions, thus changing the focus when aiming to define the minimal essential genome.


Subject(s)
DNA, Bacterial/genetics , Genome, Bacterial , Mycoplasma pneumoniae/genetics , Open Reading Frames , RNA, Untranslated/genetics , Genes, Essential , Protein Conformation , Sequence Analysis, DNA , Transcription, Genetic
13.
Transl Res ; 163(4): 418-31, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24345765

ABSTRACT

The diabetes pandemic incurs extraordinary public health and financial costs that are projected to expand for the foreseeable future. Consequently, the development of definitive therapies for diabetes is a priority. Currently, a wide spectrum of therapeutic strategies-from implantable insulin delivery devices to transplantation-based cell replacement therapy, to ß-cell regeneration-focus on replacing the lost insulin-producing capacity of individuals with diabetes. Among these, ß-cell regeneration remains promising but heretofore unproved. Indeed, recent experimental work has uncovered surprising biology that underscores the potential therapeutic benefit of ß-cell regeneration. These studies have elucidated a variety of sources for the endogenous production of new ß cells from existing cells. First, ß cells, long thought to be postmitotic, have demonstrated the potential for regenerative capacity. Second, the presence of pancreatic facultative endocrine progenitor cells has been established. Third, the malleability of cellular identity has availed the possibility of generating ß cells from other differentiated cell types. Here, we review the exciting developments surrounding endogenous sources of ß-cell production and consider the potential of realizing a regenerative therapy for diabetes from adult tissues.


Subject(s)
Cell Transplantation/methods , Insulin-Secreting Cells/physiology , Adult , Animals , Cell Transplantation/trends , Diabetes Mellitus/therapy , Humans
14.
J Am Chem Soc ; 134(43): 18074-81, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-23088750

ABSTRACT

The posttranscriptional modification of ribosomal RNA (rRNA) modulates ribosomal function and confers resistance to antibiotics targeted to the ribosome. The radical S-adenosyl-L-methionine (SAM) methyl synthases, RlmN and Cfr, both methylate A2503 within the peptidyl transferase center of prokaryotic ribosomes, yielding 2-methyl- and 8-methyl-adenosine, respectively. The C2 and C8 positions of adenosine are unusual methylation substrates due to their electrophilicity. To accomplish this reaction, RlmN and Cfr use a shared radical-mediated mechanism. In addition to the radical SAM CX(3)CX(2)C motif, both RlmN and Cfr contain two conserved cysteine residues required for in vivo function, putatively to form (cysteine 355 in RlmN) and resolve (cysteine 118 in RlmN) a covalent intermediate needed to achieve this challenging transformation. Currently, there is no direct evidence for this proposed covalent intermediate. We have further investigated the roles of these conserved cysteines in the mechanism of RlmN. Cysteine 118 mutants of RlmN are unable to resolve the covalent intermediate, either in vivo or in vitro, enabling us to isolate and characterize this intermediate. Additionally, tandem mass spectrometric analyses of mutant RlmN reveal a methylene-linked adenosine modification at cysteine 355. Employing deuterium-labeled SAM and RNA substrates in vitro has allowed us to further clarify the mechanism of formation of this intermediate. Together, these experiments provide compelling evidence for the formation of a covalent intermediate species between RlmN and its rRNA substrate and well as the roles of the conserved cysteine residues in catalysis.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , S-Adenosylmethionine/metabolism , Biocatalysis , Escherichia coli Proteins/chemistry , Free Radicals/chemistry , Free Radicals/metabolism , Methyltransferases/chemistry , Molecular Structure , Mutagenesis , S-Adenosylmethionine/chemistry
15.
Cell ; 147(6): 1295-308, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22153074

ABSTRACT

As nascent polypeptides exit ribosomes, they are engaged by a series of processing, targeting, and folding factors. Here, we present a selective ribosome profiling strategy that enables global monitoring of when these factors engage polypeptides in the complex cellular environment. Studies of the Escherichia coli chaperone trigger factor (TF) reveal that, though TF can interact with many polypeptides, ß-barrel outer-membrane proteins are the most prominent substrates. Loss of TF leads to broad outer-membrane defects and premature, cotranslational protein translocation. Whereas in vitro studies suggested that TF is prebound to ribosomes waiting for polypeptides to emerge from the exit channel, we find that in vivo TF engages ribosomes only after ~100 amino acids are translated. Moreover, excess TF interferes with cotranslational removal of the N-terminal formyl methionine. Our studies support a triaging model in which proper protein biogenesis relies on the fine-tuned, sequential engagement of processing, targeting, and folding factors.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Peptidylprolyl Isomerase/metabolism , Ribosomes/metabolism , Cytoplasm/chemistry , Escherichia coli/cytology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Molecular Sequence Data , Protein Biosynthesis , Protein Transport
16.
Cell ; 144(1): 143-56, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21185072

ABSTRACT

The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Genomics , Escherichia coli/drug effects , Gene Deletion , Gene Expression Profiling , Genome, Bacterial , Mutation
17.
Cell ; 143(7): 1097-109, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21183073

ABSTRACT

Growth of the mesh-like peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape, and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell, but precise spatiotemporal control over this process is poorly understood. We demonstrate that PG synthases are also controlled from outside of the sacculus. Two OM lipoproteins, LpoA and LpoB, are essential for the function, respectively, of PBP1A and PBP1B, the major E. coli bifunctional PG synthases. Each Lpo protein binds specifically to its cognate PBP and stimulates its transpeptidase activity, thereby facilitating attachment of new PG to the sacculus. LpoB shows partial septal localization, and our data suggest that the LpoB-PBP1B complex contributes to OM constriction during cell division. LpoA/LpoB and their PBP-docking regions are restricted to γ-proteobacteria, providing models for niche-specific regulation of sacculus growth.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/cytology , Escherichia coli/metabolism , Peptidoglycan/biosynthesis , Bacterial Outer Membrane Proteins/chemistry , Cell Division , Cell Wall/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Lipoproteins/chemistry , Lipoproteins/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Protein Interaction Domains and Motifs
18.
Proteomics ; 8(3): 435-45, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18186022

ABSTRACT

Endogenous proteinases in biological fluids such as human saliva produce a rich peptide repertoire that reflects a unique combination of enzymes, substrates, and inhibitors/activators. Accordingly, this subproteome is an interesting source of biomarkers for disease processes that either directly or indirectly involve proteolysis. However, the relevant proteinases, typically very low abundance molecules, are difficult to classify and identify. We hypothesized that a sensitive technique for monitoring accumulated peptide products in an unbiased, global manner would be very useful for detecting and profiling proteolytic activities in complex biological samples. Building on the longstanding use of 18O isotope-based approaches for the classification of proteolytic and other enzymatic processes we devised a new method for evaluating endogenous proteinases. Specifically, we showed that upon ex vivo incubation endogenous proteinases in human parotid saliva introduced 18O from isotopically enriched water into the C-terminal carboxylic groups of their peptide products. Subsequent peptide sequence determination and inhibitor profiling enabled the detection of discrete subsets of proteolytic products that were generated by different enzymes. As a proof-of-principle we used one of these fingerprints to identify the relevant activity as tissue kallikrein. We termed this technique PALeO. Our results suggest that PALeO is a rapid and highly sensitive method for globally assessing proteinase activities in complex biological samples.


Subject(s)
Endopeptidases/analysis , Peptides/analysis , Proteome/metabolism , Saliva/enzymology , Amino Acid Sequence , Humans , Molecular Sequence Data , Oxygen Isotopes/chemistry , Parotid Gland/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Water/chemistry
19.
Nat Methods ; 5(9): 781-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19160513

ABSTRACT

Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli.


Subject(s)
Conjugation, Genetic , Escherichia coli/genetics , Mutation , Genome, Bacterial
20.
Immunogenetics ; 59(7): 525-37, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17464504

ABSTRACT

The killer cell immunoglobulin-like receptors (KIR) interact with major histocompatibility complex (MHC) class I ligands to regulate the functions of natural killer cells and T cells. Like human leukocyte antigens class I, human KIR are highly variable and correlated with infection, autoimmunity, pregnancy syndromes, and transplantation outcome. Limiting the scope of KIR analysis is the low resolution, sensitivity, and speed of the established methods of KIR typing. In this study, we describe a first-generation single nucleotide polymorphism (SNP)-based method for typing the 17 human KIR genes and pseudogenes that uses analysis by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. It is a high-throughput method that requires minute amounts of genomic DNA for discrimination of KIR genes with some allelic resolution. A study of 233 individuals shows that the results obtained by the SNP-based KIR/MALDI-TOF method are consistent with those obtained with the established sequence-specific oligonucleotide probe or sequence-specific polymerase chain reaction methods. The added sensitivity of the KIR/MALDI-TOF method allowed putative novel alleles of the KIR2DL1, KIR3DL1, KIR2DS5, and KIR2DL5 genes to be identified. Sequencing the KIR2DL5 variant proved it was a newly discovered allele, one that appears associated with Hispanic and Native American populations. This KIR/MALDI-TOF method of KIR typing should facilitate population and disease-association studies that improve knowledge of the immunological functions of KIR-MHC class I interactions.


Subject(s)
Alleles , Immunophenotyping , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Immunologic/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Cell Line , Genetic Variation , Genotype , Histocompatibility Testing , Humans , Killer Cells, Natural/chemistry , Molecular Sequence Data , Polymorphism, Single Nucleotide , Receptors, Immunologic/chemistry , Receptors, KIR , Receptors, KIR2DL1 , Receptors, KIR3DL1 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...