Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 57(66): 8107-8120, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34322691

ABSTRACT

Optical activity, a foundational part of chemistry, is not restricted to chiral molecules although generations have been instructed otherwise. A more inclusive view of optical activity is valuable because it clarifies structure-property relationships however, this view only comes into focus in measurements of oriented molecules, commonly found in crystals. Unfortunately, measurements of optical rotatory dispersion or circular dichroism in anisotropic single crystals have challenged scientists for more than two centuries. New polarimetric methods for unpacking the optical activity of crystals in general directions are still needed. Such methods are reviewed as well as some of the 'nourishment' they provide, thereby inviting to new researchers. Methods for fitting intensity measurements in terms of the constitutive tensor that manifests as the differential refraction and absorption of circularly polarized light, are described, and examples are illustrated. Single oriented molecules, as opposed to single oriented crystals, can be treated computationally. Structure-property correlations for such achiral molecules with comparatively simple electronic structures are considered as a heuristic foundation for the response of crystals that may be subject to measurement.

2.
J Opt Soc Am A Opt Image Sci Vis ; 35(8): 1254-1260, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30110286

ABSTRACT

We review here the pioneering research conducted by Paul Soleillet on the statistical properties of light in his doctoral thesis from 1929 [Ann. Phys.10, 23 (1929)]. Soleillet's wide-reaching work on polarization, coherence, fluorescence scattering, and three-dimensional fields has remained largely unrecognized; yet, his original contributions rival the modern rediscoveries in both generality and form. Only now, 89 years after Soleillet's original publication and stimulated by our current research on fluorescence polarimetry, have we been able to fully understand and recognize the significance of his results.

3.
Faraday Discuss ; 211(0): 477-491, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30033458

ABSTRACT

X-ray powder diffraction and crystal structure prediction (CSP) algorithms were used in synergy to establish the crystal structure of the eighth polymorph of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), form R05. R05 crystallizes in the monoclinic space group P21 with lattice parameters a = 11.479(4) Å, b = 11.030(1) Å, c = 10.840(6) Å, ß = 118.23(1)°. This is both the first acentric ROY polymorph, and the first with Z' > 1. The torsion angles defined by the S-C-N-C atom sequence of each molecule in the asymmetric unit (R05-1 and R05-2) are 44.9° and -34.0°. These values are between those previously determined for the red and orange forms of ROY. The crystal packing and intermolecular interactions in R05 are explained herein through Hirshfeld surface analysis and an updated energy stability ranking is determined using computational methods. Although the application of CSP was critical to the structure solution of R05, energy stability rankings determined using a series of DFT van der Waals (vdW)-inclusive models substantially differ from experiment, indicating that ROY polymorphism continues to be a challenge for CSP.


Subject(s)
Thiophenes/chemistry , Crystallization , Crystallography, X-Ray , Models, Molecular , Quantum Theory , Thermodynamics
4.
Chirality ; 30(7): 841-849, 2018 07.
Article in English | MEDLINE | ID: mdl-29733458

ABSTRACT

Accurate polarimetric measurements of the optical activity of crystals along low symmetry directions are facilitated by isotropic points, frequencies where dispersion curves of eigenrays cross and the linear birefringence disappears. We report here the optical properties and structure of achiral, uniaxial (point group D2d ) potassium trihydrogen di-(cis-4-cyclohexene-1,2-dicarboxylate) dihydrate, whose isotropic point was previously detected (S. A. Kim, C. Grieswatch, H. Küppers, Zeit. Krist. 1993; 208:219-222) and exploited for a singular measurement of optical activity normal to the optic axis. The crystal structure associated with the aforementioned study was never published. We report it here, confirming the space group assignment I 4¯c2, along with the frequency dependence of the fundamental optical properties and the constitutive tensors by fitting optical dispersion relations to measured Mueller matrix spectra. k-Space maps of circular birefringence and of the Mueller matrix near the isotropic wavelength are measured and simulated. The signs of optical rotation are correlated with the absolute crystallographic directions.

5.
J Appl Crystallogr ; 50(Pt 4): 1117-1124, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28808435

ABSTRACT

Circular birefringence (CB) is generally responsible for only a small perturbation to the state of light polarization in crystals that also exhibit linear birefringence (LB). As such, the magnetoelectric tensor of gyration, which gives rise to CB and optical activity, is less well determined than the electric permittivity tensor in optical models of the Mueller matrix. To visualize the effect of the magnetoelectric tensor on polarimetric measurements, reported here are experimental mappings of the Mueller matrix and of the CB in a new chiral crystal with accidental null LB at an accessible optical frequency. Single crystals of ethylenediammonium selenate (EDSeO4) were synthesized and characterized by X-ray diffraction and Mueller matrix measurements in transmission and reflection. The crystals are isomorphous with the corresponding sulfate salt. They are tetragonal, space group P41(3)212. The constitutive relations of EDSeO4 were recovered using a partial wave summation of incoherent reflections. The extraordinary and ordinary refractive indices cross at 364 nm (3.41 eV), a scenario commonly called the 'isotropic point' or 'iso-index point'. At this wavelength, the magnetoelectric tensor fully describes the polarization transformation, giving rise to a double cone of eigendirections.

6.
J Am Chem Soc ; 138(37): 12211-8, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27617640

ABSTRACT

Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils.

7.
Chirality ; 28(6): 460-5, 2016 06.
Article in English | MEDLINE | ID: mdl-27126891

ABSTRACT

Ethylenediammonium sulfate (EDS) crystals were grown from aqueous solution and cleaved into thin (100-500 micron) plates. The 422 point group of EDS was confirmed by X-ray diffraction. The constitutive relations of EDS crystals were determined through generalized ellipsometry with an instrument that uses four photoelastic modulators (4PEM). The optical rotation at 500 nm, for example, was + 22.9°/mm along the optic axis and - 12.1°/mm perpendicular to the optic axis for the P41 21 2 crystals. Enantiomorphous twins frequently form across the (001) plane. Mirrored halves must be separated by cleavage in advance of optical measurements. Chirality 28:460-465, 2016. © 2016 Wiley Periodicals, Inc.

8.
Opt Express ; 24(3): 2242-52, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906800

ABSTRACT

The optical activity of fabricated metallic nanostructures is investigated by complete polarimetry. While lattices decorated with nanoscale gammadia etched in thin metallic films have been described as two dimensional, planar nanostructures, they are better described as quasi-planar structures with some three dimensional character. We find that the optical activity of these structures arises not only from the dissymmetric backing by a substrate but, more importantly, from the selective rounding of the nanostructure edges. A true chiroptical response in the far-field is only allowed when the gammadia contain these non-planar features. This is demonstrated by polarimetric measurements in conjunction with electrodynamical simulations based on the discrete dipole approximation that consider non-ideal gammadia. It is also shown that subtle planar dissymmetries in gammadia are sufficient to generate asymmetric transmission of circular polarized light.

9.
J Opt Soc Am A Opt Image Sci Vis ; 32(11): 2049-57, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26560919

ABSTRACT

Formulas for modeling ellipsometric measurements of bianisotropic crystals assume perfectly coherent plane wave illumination. As such, the finite coherence of typical spectroscopic ellipsometers renders such formulas invalid for crystals thicker than a few micrometers. Reflection measurements of thick crystalline slabs show depolarization. Researchers have proposed strategies for the full accounting for multiply reflected incoherent waves in anisotropic, arbitrarily oriented crystals [Appl. Opt.41, 2521 (2002).APOPAI0003-693510.1364/AO.41.002521], but to the best of our knowledge these methods have not been tested by explicit measurements. It is shown that by a summation of multiply reflected incoherent waves, transmission and reflection measurements of thick quartz slabs can be interpreted in terms of the constitutive material parameters.

10.
Article in English | MEDLINE | ID: mdl-26207086

ABSTRACT

The intergrowth crystal of n-tetracosane/urea presents a misfit parameter, defined by the ratio γ = ch /cg (chost/cguest), that is very close to a commensurate value (γ ≅ 1/3). High-resolution diffraction studies presented here reveal an aperiodic misfit parameter of γ = 0.3369, which is found to be constant at all temperatures studied. A complex sequence of structural phases is reported. The high temperature phase (phase I) exists in the four-dimensional superspace group P6122(00γ). At Tc1 = 179(1) K, a ferroelastic phase transition increases the dimension of the crystallographic superspace. This orthorhombic phase (phase II) is characterized by the five-dimensional (5D) superspace group C2221(00γ)(10δ) with a modulation vector ao* + cm* = ao* + δ · ch*, in which the supplementary misfit parameter is δ = 0.025(1) in host reciprocal units. This corresponds to the appearance of a modulation of very long period (about 440 ± 16 Å). At Tc2 = 163.0(5) K, a 5D to 5D phase transition leads to the crystallographic superspace group P212121(00γ)(00δ) with a very similar value of δ. This phase transition reveals a significant hysteresis effect.

11.
Opt Express ; 22(11): 13719-32, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921565

ABSTRACT

Dissymmetric, periodically nanostructured metal films can show non-reciprocal transmission of polarized light, in apparent violation of the Lorentz reciprocity theorem. The wave vector dependence of the extraordinary optical transmission in gold films with square and oblique subwavelength hole arrays was examined for the full range of polarized light input states. In normal incidence, the oblique lattice, in contrast to square lattice, showed strong asymmetric, non-reciprocal transmission of circularly polarized light. By analyzing the polarization of the input and the output with a complete Mueller matrix polarimeter the mechanisms that permits asymmetric transmission while preserving the requirement of electromagnetic reciprocity is revealed: the coupling of the linear anisotropies induced by misaligned surface plasmons in the film. The square lattice also shows asymmetric transmission at non-normal incidence, whenever the plane of incidence does not coincide with a mirror line.

12.
J Am Chem Soc ; 136(14): 5481-90, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24625095

ABSTRACT

Crystal optical properties of banded spherulites of 21 different compounds--molecular crystals, polymers, and minerals--with helically twisted fibers were analyzed with Mueller matrix polarimetry. The well-established radial oscillations in linear birefringence of many polycrystalline ensembles is accompanied by oscillations in circular birefringence that cannot be explained by the natural optical activity of corresponding compounds, some of which are centrosymmetric in the crystalline state. The circular birefringence is shown to be a consequence of misoriented, overlapping anisotropic lamellae, a kind of optical activity associated with the mesoscale stereochemistry of the refracting components. Lamellae splay as a consequence of space constraints related to simultaneous twisting of anisometric lamellae. This mechanism is supported by quantitative simulations of circular birefringence arising from crystallite twisting and splaying under confinement.

13.
J Am Chem Soc ; 136(7): 2757-66, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24456191

ABSTRACT

The growing realization that photoinduced bending of slender photoreactive single crystals is surprisingly common has inspired researchers to control crystal motility for actuation. However, new mechanically responsive crystals are reported at a greater rate than their quantitative photophysical characterization; a quantitative identification of measurable parameters and molecular-scale factors that determine the mechanical response has yet to be established. Herein, a simple mathematical description of the quasi-static and time-dependent photoinduced bending of macroscopic single crystals is provided. This kinetic model goes beyond the approximate treatment of a bending crystal as a simple composite bilayer. It includes alternative pathways for excited-state decay and provides a more accurate description of the bending by accounting for the spatial gradient in the product/reactant ratio. A new crystal form (space group P21/n) of the photoresponsive azo-dye Disperse Red 1 (DR1) is analyzed within the constraints of the aforementioned model. The crystal bending kinetics depends on intrinsic factors (crystal size) and external factors (excitation time, direction, and intensity).


Subject(s)
Azo Compounds/chemistry , Light , Mechanical Phenomena , Models, Molecular , Crystallization , Kinetics , Molecular Conformation
14.
Opt Lett ; 37(14): 2835-7, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22825150

ABSTRACT

A reappraisal of the 1929 analysis of luminescence by Soleillet reveals the form of the Mueller matrix for fluorescence scattering whose parameters are directly defined in terms of the now-familiar fluorescence anisotropy parameter. If the scattering analyte is optically active, it is further shown how fluorescence detected circular dichroism and circularly polarized luminescence can be recovered, simultaneously and free of artifacts.

15.
J Chem Phys ; 136(10): 104507, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423848

ABSTRACT

n-Heptane/urea is an aperiodic inclusion compound in which the ratio of host and guest repeats along the channel axis is very close to unity and is found to have a constant value (0.981) from 280 K to 90 K. Below 280 K, two phase transitions are observed. The first (T(c1) = 145 K) is a ferroelastic phase transition that generates superstructure reflections for the host while leaving the guest with 1D order. The second (T(c2) = 130 K) is a "phase ordering" transition to a four-dimensional structure (P2(1)11(0ßγ)) with pronounced host-guest intermodulation and a temperature dependent phase shift between guests in adjacent channels.

SELECTION OF CITATIONS
SEARCH DETAIL
...