Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Transl Anim Sci ; 4(3): txaa109, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32728660

ABSTRACT

Randomized complete block design experiments (n = 6 experiments) evaluating steroidal implants (all from Merck Animal Health, Madison, NJ) were conducted in large-pen feedlot research facilities between 2015 and 2018 comparing an 80 mg trenbolone acetate (TBA) and 8 mg estradiol-17ß (E2) initial implant (Revalor-IH) and reimplanted with 200 mg TBA and 20 mg E2 (Revalor-200; REPEATED) to a single 80 mg TBA and 8 mg E2 uncoated; 120 mg TBA and 12 mg E2 coated implant (Revalor-XH) at arrival (SINGLE) on growth and carcass responses in finishing heifers. Experiments occurred in Nebraska, Oklahoma, Washington, and Texas. Similar arrival processing was used across experiments where 17,675 heifers [initial body weight = 333 kg SEM (4.1)] were enrolled into 180 pens (90 pens per treatment with 65-240 heifers per pen) and fed for 145-222 d. Only REPEATED heifers were removed from their pen at reimplant. Diets contained monensin and tylosin, consisted of ingredients common to each region, and contained greater than 90% concentrate. Ractopamine hydrochloride was fed for a minimum of 28 d prior to harvest. Linear mixed models were used for all analyses; model-adjusted means for each implant group and the corresponding SEM were generated. Distributions of U.S. Department of Agriculture (USDA) quality grade (QG) and yield grade (YG) were analyzed as ordinal outcomes. No differences (P ≥ 0.11) were detected for any performance parameters except dry matter intake (DMI), where SINGLE had greater (P = 0.02) DMI (9.48 vs. 9.38 ± 0.127 kg) compared with REPEATED. Heifers implanted with REPEATED had greater (P ≤ 0.02) hot carcass weight (HCW; 384 vs. 382 ± 2.8 kg), dressing percentage (64.54 vs. 64.22 ± 0.120%), and ribeye area (91.87 vs. 89.55 ± 0.839 cm2) but less (P ≤ 0.01) rib fat (1.78 vs. 1.83 ± 0.025 cm) and calculated YG (2.82 vs. 2.97 ± 0.040) and similar (P = 0.74) marbling scores (503 vs. 505 ± 5.2) compared with SINGLE heifers. Distributions of USDA YG and QG were impacted (P ≤ 0.03) by treatment such that REPEATED had fewer USDA Prime and YG 4 and 5 carcasses. Heifer growth performance did not differ between implant regimens, but HCW and muscling did, perhaps indicating that REPEATED may be suited for grid-based marketing, and SINGLE might be suited for heifers sold on a live basis depending upon market conditions and value-based grid premiums and discounts. However, these decisions are operational dependent and also may be influenced by factors including animal and employee safety, stress on animals, processing facilities, time of year, labor availability, and marketing strategies.

2.
Transl Anim Sci ; 3(4): 1182-1193, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32704882

ABSTRACT

Two experiments evaluated the effect of implant number, type, and total steroidal dose on live animal performance and carcass traits in heifers fed for three different days on feed (DOF). In experiment 1, heifers (n = 3,780; 70 heifers/pen and 9 pens/treatment; initial body weight [BW] = 309 kg) were used in a 2 × 3 factorial arrangement of treatments. Factors were as follows: 1) implant (all from Merck Animal Health, De Soto, KS): 200 mg trenbolone acetate (TBA) and 20 mg estradiol-17ß (E2) administered on arrival (SINGLE), or 80 mg TBA and 8 mg E2 administered on arrival followed by 200 mg TBA and 20 mg E2 after approximately 90 d (REPEATED) and 2) duration of DOF: harvested after approximately 172, 193, and 214. In experiment 2, heifers (n = 3,719; 65 to 70 heifers/pen and 9 pens/treatment; initial BW = 337 kg) were used with the same factors as experiment 1, except DOF were 150, 171, and 192. No implant × DOF interaction (P ≥ 0.06) was noted for any performance parameters in either experiment. Heifers administered REPEATED had improved (P ≤ 0.05) live gain to feed ratio (G:F) and carcass-adjusted G:F and tended (P = 0.09) to have greater hot carcass weight (HCW) in experiment 1. Increasing DOF resulted in greater (P ≤ 0.01) live and carcass-adjusted final BW and decreased (P = 0.01) live ADG in experiment 1. As DOF increased, HCW, HCW gain, and dressing% (P ≤ 0.01) increased in experiment 1. The mean carcass transfer was 79.6% across the 42 d terminal window in experiment 1. In experiment 2, REPEATED had improved (P = 0.03) carcass-adjusted G:F compared with SINGLE, but HCW was not different (P = 0.36) between treatments. Increased DOF resulted in greater (P ≤ 0.01) final live and carcass-adjusted BW, decreased (P ≤ 0.01) live and carcass-adjusted ADG, and poorer (P ≤ 0.01) live and carcass-adjusted G:F in experiment 2. In experiment 2, dressing percentage was greater (P = 0.02) in REPEATED compared with SINGLE. Heifers given SINGLE had greater (P = 0.01) back fat and estimated empty body fat (EBF), whereas REPEATED had fewer (P = 0.01) Yield Grade 4 carcasses and greater (P = 0.01) longissimus muscle (LM) area. Increased DOF resulted in greater (P ≤ 0.04) HCW, HCW gain, dressing%, back fat, LM area, marbling, EBF%, and United States Department of Agriculture (USDA) Prime-grading carcasses, Yield Grade 4 and 5, and over 454-kg carcasses in experiment 2. Carcass ADG and carcass transfer indicate a 0.70 kg carcass ADG between 150 and 192 DOF, resulting in an average carcass transfer of 72.2% in experiment 2. Although feedlot growth performance and HCW did not differ between the implant regimens tested, increasing DOF resulted in decreased live growth performance while increasing the proportion of USDA prime carcasses and HCW.

3.
J Anim Sci ; 96(8): 3173-3183, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-29873727

ABSTRACT

An experiment was conducted to evaluate the fabrication yields of carcasses from beef steers supplemented zilpaterol hydrochloride (ZH) and fed at maintenance (MA) or ad libitum (AB) intake levels. Beef steers (n = 56) from a common sire were blocked (n = 28 per block) by terminal growth implant and sorted into pairs by BW. Four pairs (n = 8) were harvested on day 0; the remaining 24 pairs (n = 48) were assigned to a dietary intake level (MA or AB) and days on feed (28 or 56 d). Within pairs of MA or AB intakes, steers harvested on day 56 were randomly assigned to supplementation of ZH (90 mg·d-1 per steer) for 20 d followed by a withdrawal period of 4 d or control (C). Steers (BW = 603.5 ± 48.1 kg) were harvested at a commercial processing facility. After a 24-h chill period, standard USDA grading procedures were used to derive a calculated yield grade and quality grade. Following grading, left carcass sides were transported to the West Texas A&M University Meat Laboratory for fabrication. Each side was fabricated into subprimals to determine individual red meat yield (RMY), trimmable fat yield (TFY), and bone yield (BY). A mixed model was used for analysis; fixed effects included treatment combinations and random effects included block and pairs. Single df contrasts tested day 0 vs. 28, day 0 vs. 56, day 28 vs. 56, MA vs. AB, and C vs. ZH. Yield of chuck eye roll differed (P = 0.05) by days on feed (0 d = 4.14, 28 d = 4.11, 56 d = 4.55%). Similarly, eye of round yield was impacted (P = 0.02) by days on feed (0 d = 1.51, 28 d = 1.37, 56 d = 1.36%). Additionally, brisket yield was altered (P < 0.01) by days on feed (0 d = 4.08, 28 d = 3.56, 56 d = 3.48%) and treatment (C = 3.34, ZH = 3.61%). For remaining subprimals, no differences (P ≥ 0.15) were detected. Furthermore, results indicated that RMY tended (P = 0.07) to differ by treatment (C = 61.35, ZH = 63.67%). Comparatively, TFY was impacted (P = 0.04) by intake (MA = 20.44, AB = 23.33%). Results from this study indicate that a MA intake level during the last 56 d of the finishing period concurrent with ZH supplementation impacts subprimal yields as well as carcass RMY and TFY of beef steers.


Subject(s)
Animal Feed/analysis , Cattle/growth & development , Dietary Supplements , Energy Intake , Red Meat/analysis , Trimethylsilyl Compounds/pharmacology , Animals , Body Weight/drug effects , Diet/veterinary , Male , Random Allocation
4.
J Anim Sci ; 96(5): 1688-1703, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29635330

ABSTRACT

A trial was conducted to examine live growth efficiency, harvest yields, and carcass grading performance of steers fed at maintenance (M) or at ad libitum (A) level of intake during zilpaterol hydrochloride (Z) supplementation. Single-sired, beef steers (n = 56; start of trial BW 590 ± 36 kg) blocked (n = 2) by weight and terminal implant were sorted into pairs (n = 14 per block) by weight. Pairs of steers were initially assigned to 0, 28, or 56 d of feeding. Within 28 or 56 d, pairs were assigned to M or A intake. Steers within a pair assigned to 56 d of feeding were randomly assigned to either 20 d of Z supplementation (90 mg/d per steer) with a 4 d withdrawal period prior to slaughter or to no ZH supplementation (C). Steers were housed and fed in individual pens. Weights of all non-carcass and carcass components were recorded at slaughter; carcasses were graded 24-h postmortem. Data were analyzed via a mixed model; the fixed effect was treatment combination with random effects of block and pair. Live growth data used harvest day as the repeated measure and animal as the subject. Single df contrasts were constructed for day 0 vs. day 28, day 0 vs. day 56, day 28 vs. day 56, M vs. A, and C vs. Z. Treatment impacted (P ≤ 0.05) live ADG; contrasts indicated A (1.33) was greater than M (0.14 kg), and Z (1.12) was greater than C (0.82 kg). Similarly, carcass ADG differences (P < 0.01) indicated A (1.04) was greater than M (0.36 kg), and Z (1.35) was greater than C (0.71 kg). Intake level altered BW and empty body weight (EBW); M cattle had reduced BW and EBW (P < 0.01, 585 and 540 kg) than A cattle (647 and 597 kg). Cattle fed at M had less carcass and internal cavity mass (P < 0.01, 359 and 79.4 kg) than A cattle (394 and 93.5 kg). Liver mass was reduced by M feeding (P < 0.01; M-5.03, A-6.69 kg) and Z treatment (P < 0.01; Z-5.64, C-6.06 kg). Moreover, mass of total splanchnic tissue was less (P < 0.01) for M cattle than A cattle (59.8 vs. 72.5 kg). Dressed carcass yield was greater (P < 0.01) for Z than C cattle (63.5 vs. 61.6%). Cattle fed at M had less 12th rib s.c. fat, lower numerical U.S. yield grades (P < 0.01; M-1.71 cm and 3.3, A-2.46 cm and 4.3) and lower numerical Canadian yield grades (P < 0.01; 51.9 vs. 53.9% for M and A, respectively) than A cattle. Results indicate that energy intake level and Z supplementation influence live and carcass growth, carcass transfer, kill yields, and carcass characteristics across time.


Subject(s)
Animal Feed/analysis , Cattle/growth & development , Dietary Supplements , Energy Intake , Trimethylsilyl Compounds/pharmacology , Animals , Body Weight/drug effects , Diet/veterinary , Male , Random Allocation
5.
J Anim Sci ; 96(5): 1704-1723, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29534183

ABSTRACT

Crossbred beef steers (n = 240; 12 pens/treatment; initial BW = 305 ± 17.7 kg) were used in a randomized block design feedlot study to evaluate the influence of coated trenbolone acetate (TBA) and estradiol-17ß (E2) implants (Merck Animal Health, Madison, NJ) on gain performance, carcass traits, and sera metabolites. The five treatments were no implant (NI), Revalor-XR on d 0 [200 mg TBA + 20 mg E2 (coated); XR], Revalor-XS on d 0 [200 mg TBA + 40 mg E2 (total): 80 mg TBA + 16 mg E2 (noncoated) and 120 mg TBA + 24 mg E2 (coated); XS], Revalor-200 on d 0 [200 mg TBA + 20 mg E2 (noncoated); E200], or Revalor-200 on d 70 (D200). Interim BW and blood were collected on d 0, 14, 35, 70, 105, 140, and 175 prior to feeding and on d 213 prior to shipping. Following a 24 h clot at 4 °C, sera was harvested to quantify circulating E2, IGF-I, NEFA, serum urea-N (SUN), and 17ß-trenbolone (17ß-TbOH). Implanted steers had greater (P ≤ 0.05) ADG, G:F, and final BW than NI controls. Implants increased (P < 0.05) HCW by 8%, 366 vs. 391, 414, 380, and 396 ± 6.4 kg, for NI vs. XR, XS, E200, and D200, respectively. The greatest (P ≤ 0.05) dressing percentage, yield grade, and calculated empty body fat occurred in XS, which had greater (P < 0.05) rib fat than NI, XR, and D200. Marbling scores in NI were greater (P < 0.05) than E200 and D200; steers in XR and XS were intermediate (P > 0.10), not differing from NI, E200, or D200. An implant × day interaction (P ≤ 0.01) was noted for circulating E2, IGF-I, SUN, and 17ß-TbOH. Implanted steers had elevated (P ≤ 0.05) sera E2, IGF-I, and 17ß-TbOH, and decreased (P < 0.05) SUN following implantation compared to NI controls. Serum NEFA differed (P < 0.01) over time, but did not differ (P > 0.10) due to implant treatment. These data indicated that the polymer coating applied to the XR implant delayed release of steroidal hormones congruently to D200, with no negative impact on marbling. The greatest dose of E2, contained in XS, provided improvements in gain and carcass weight without detriment to marbling scores compared to NI.


Subject(s)
Anabolic Agents/administration & dosage , Cattle/physiology , Drug Implants/administration & dosage , Estradiol/administration & dosage , Trenbolone Acetate/analogs & derivatives , Trenbolone Acetate/administration & dosage , Adipose Tissue/drug effects , Animals , Blood Urea Nitrogen , Body Composition/drug effects , Cattle/blood , Cattle/growth & development , Drug Combinations , Male , Steroids/administration & dosage , Weight Gain/drug effects
6.
J Exp Zool A Ecol Genet Physiol ; 325(2): 142-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26817746

ABSTRACT

How and when turtles first acquire gut microflora is largely speculative. In this study, the eggshell and hatching process were evaluated for their role in the initial acquisition of Salmonella, by red-eared slider turtles (Trachemys scripta elegans). First, we examined whether the eggshell is a viable substrate for bacterial persistence during incubation, and if internal egg components (i.e., albumen, yolk, and embryo) have detectable bacterial loads. Second, we experimentally manipulated Salmonella by treating eggs with combinations of Salmonella and gentamicin, an effective Gram-negative antibiotic. We found that the eggshell is a viable substrate for maintaining bacteria, as well as an effective barrier to Salmonella transmission as internal egg components were largely bacteria-free. Water samples collected 18 days post-hatch from individuals that were experimentally inoculated with a topical application of Salmonella as eggs had a higher prevalence of Salmonella than those from eggs inoculated with Salmonella but topically treated with gentamicin prior to hatching, control eggs, and eggs only treated with gentamicin, but by day 35 post-hatch there were no detectable differences among the treatment groups. Though it can also act as a barrier that prevents the bacteria from infecting the embryo prior to hatching these findings suggest that the eggshell is a likely source of Salmonella infection in turtle hatchlings.


Subject(s)
Egg Shell/microbiology , Ovum/microbiology , Salmonella/physiology , Turtles/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Gentamicins/pharmacology , Salmonella/drug effects , Water Microbiology
7.
Curr Genet ; 57(3): 169-75, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21222124

ABSTRACT

Coniochaeta ligniaria NRRL30616 is an ascomycete that grows with yeast-like appearance in liquid culture. The strain has potential utility for conversion of fibrous biomass to fuels or chemicals. Furans and other inhibitory compounds in lignocellulosic biomass are metabolized by NRRL30616, facilitating subsequent microbial fermentation of biomass sugars. This study undertook initial characterization of the genetic system of C. ligniaria NRRL30616. Transformation using hygromycin as a dominant selectable marker was achieved using protoplasts generated by incubating cells in 1% (v/v) ß-mercaptoethanol, followed by cell wall-digesting enzymes. Thirteen chromosomes with an estimated total size of 30.1 Mb were detected in C. ligniaria. The GC content of chromosomal DNA and of coding regions from cDNA sequences were 49.2 and 51.9%, respectively. This study is the first report of genome size, electrophoretic karyotype, and transformation system for a member of the Coniochaetales.


Subject(s)
Ascomycota , Chromosome Mapping , Open Reading Frames , Protoplasts/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Base Composition , Base Sequence , Biomass , Cinnamates/pharmacology , Electrophoresis, Gel, Pulsed-Field , Escherichia coli , Fermentation , Furans/metabolism , Gene Expression/drug effects , Genome, Fungal , Hydrolysis , Hygromycin B/analogs & derivatives , Hygromycin B/pharmacology , Karyotyping , Lignin/metabolism , Molecular Sequence Data , Plasmids , Protoplasts/cytology , Transformation, Genetic/drug effects
8.
Can J Microbiol ; 54(11): 906-17, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18997847

ABSTRACT

The opportunistic pathogen Haemophilus parainfluenzae is a gram-negative bacterium found in the oropharynx of humans. Haemophilus parainfluenzae is a member of the Pasteurellaceae family in which it is most closely related to Haemophilus sengis and Actinobacillus. Characterization of surface displayed lipooligosaccharide has identified components that are crucial in adherence. We examined the oligosaccharide structure of lipooligosaccharide from 2 clinical isolates of H. parainfluenzae. Core oligosaccharide was isolated by standard methods from purified lipooligosaccharide. Structural information was established by a combination of monosaccharide and methylation analyses, nuclear magnetic resonance spectroscopy, and mass spectrometry revealing the following structures: R-(1-6)-beta-Glc-(1-4)-D,D-alpha-Hep-(1-6)-beta-Glc-(1-4)- substituting a tri-heptose-Kdo inner core of L,D-alpha-Hep-(1-2)-L,D-alpha-Hep-(1-3)-L,D-alpha-Hep-(1-5)-alpha-Kdo at the 4-position of the proximal L,D-alpha-Hep residue to Kdo, and with a PEtn residue at the 6-position of the central L,D-alpha-Hep residue. In strain 4282, the R substituent is beta-galactose and in strain 4201 there is no substituent at the distal glucose. These analyses have revealed that multiple structural aspects of H. parainfluenzae lipooligosaccharide are comparable with nontypeable Haemophilus influenzae lipooligosaccharide. This study also identified a galactan in strain 4201 and a glucan in strain 4282. Haemophilus parainfluenzae was shown to adhere to a bronchial epithelial cell line to the same degree as nontypeable H. influenzae. However, an H. parainfluenzae mutant lacking the outer core of the lipooligosaccharide showed diminished adherence to the epithelial cells, suggesting that H. parainfluenzae lipooligosaccharide plays a role in tissue colonization.


Subject(s)
Bacterial Adhesion , Haemophilus Infections/microbiology , Haemophilus parainfluenzae/physiology , Lipopolysaccharides/chemistry , Mutation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Carbohydrate Sequence , Cell Line , Epithelial Cells/microbiology , Haemophilus parainfluenzae/chemistry , Haemophilus parainfluenzae/genetics , Humans , Lipopolysaccharides/genetics , Lipopolysaccharides/isolation & purification , Lipopolysaccharides/metabolism , Molecular Sequence Data , Mutagenesis
12.
J Biol Chem ; 277(17): 14598-611, 2002 Apr 26.
Article in English | MEDLINE | ID: mdl-11842084

ABSTRACT

The lipooligosaccharide (LOS) of Haemophilus influenzae contains sialylated glycoforms, and a sialyltransferase, Lic3A, has been previously identified. We report evidence for two additional sialyltransferases, SiaA, and LsgB, that affect N-acetyllactosamine containing glycoforms. Mutations in genes we have designated siaA and lsgB affected only the sialylated glycoforms containing N-acetylhexosamine. A mutation in siaA resulted in the loss of glycoforms terminating in sialyl-N-acetylhexosamine and the appearance of higher molecular weight glycoforms, containing the addition of phosphoethanolamine, N-acetylgalactosamine, and N-acetylneuraminic acid. Chromosomal complementation of the siaA mutant resulted in the expression of the original sialylated LOS phenotype. A mutation in lic3A resulted in the loss of sialylation only in glycoforms lacking N-acetylhexosamine and had no effect on sialylation of the terminal N-acetyllactosamine epitope. A double mutant in siaA and lic3A resulted in the complete loss of sialylation of the terminal N-acetyllactosamine epitope and expression of the higher molecular weight sialylated glycoforms seen in the siaA mutant. Mutation of lsgB resulted in persistence of sialylated glycoforms but a reduction in N-acetyllactosamine containing glycoforms. A triple mutant of siaA, lic3A, and lsgB contained no sialylated glycoforms. These results demonstrate that the sialylation of the LOS of H. influenzae is a complex process involving multiple sialyltransferases.


Subject(s)
Haemophilus influenzae/enzymology , Lipopolysaccharides/metabolism , N-Acetylneuraminic Acid/metabolism , Sialyltransferases/metabolism , Base Sequence , Blotting, Southern , Blotting, Western , Cloning, Molecular , DNA Primers , Electrophoresis, Polyacrylamide Gel , Genetic Complementation Test , Mutagenesis, Site-Directed , Sialyltransferases/chemistry , Sialyltransferases/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...