Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiology (Reading) ; 153(Pt 7): 2148-2158, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17600059

ABSTRACT

Carbon-energy source starvation is a commonly encountered stress that can influence the epidemiology and virulence of Salmonella enterica serovars. Salmonella responds to C-starvation by eliciting the starvation-stress response (SSR), which allows for long-term C-starvation survival and cross-resistance to other stresses. The stiC locus was identified as a C-starvation-inducible, sigma(S)-dependent locus required for a maximal SSR. We report here that the stiC locus is an operon composed of the yohC (putative transport protein) and pbpG (penicillin-binding protein-7/8) genes. yohC pbpG transcription is initiated from a sigma(S)-dependent C-starvation-inducible promoter upstream of yohC. Another (sigma(S)-independent) promoter, upstream of pbpG, drives lower constitutive pbpG transcription, primarily during exponential phase. C-starvation-inducible pbpG expression was required for development of the SSR in 5 h, but not 24 h, C-starved cells; yohC was dispensable for the SSR. Furthermore, the yohC pbpG operon is induced within MDCK epithelial cells, but was not essential for oral virulence in BALB/c mice. Thus, PBP 7 is required for physiological changes, occurring within the first few hours of C-starvation, essential for the development of the SSR. Lack of PBP 7, however, can be compensated for by further physiological changes developed in 24 h C-starved cells. This supports the dynamic overlapping and distinct nature of resistance pathways within the Salmonella SSR.


Subject(s)
Bacterial Proteins/metabolism , Carbon/metabolism , Oxidative Stress , Penicillin-Binding Proteins/biosynthesis , Periplasmic Proteins/biosynthesis , Salmonella typhimurium/growth & development , Salmonella typhimurium/physiology , Sigma Factor/metabolism , Adaptation, Physiological , Cell Cycle , Cell Line , Gene Expression Regulation, Bacterial , Salmonella typhimurium/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...