Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 71(4): 1120-1141, 2023 04.
Article in English | MEDLINE | ID: mdl-36583573

ABSTRACT

The sphingolipids galactosylceramide (GalCer), sulfatide (ST) and sphingomyelin (SM) are essential for myelin stability and function. GalCer and ST are synthesized mostly from C22-C24 ceramides, generated by Ceramide Synthase 2 (CerS2). To clarify the requirement for C22-C24 sphingolipid synthesis in myelin biosynthesis and stability, we generated mice lacking CerS2 specifically in myelinating cells (CerS2ΔO/ΔO ). At 6 weeks of age, normal-appearing myelin had formed in CerS2ΔO/ΔO mice, however there was a reduction in myelin thickness and the percentage of myelinated axons. Pronounced loss of C22-C24 sphingolipids in myelin of CerS2ΔO/ΔO mice was compensated by greatly increased levels of C18 sphingolipids. A distinct microglial population expressing high levels of activation and phagocytic markers such as CD64, CD11c, MHC class II, and CD68 was apparent at 6 weeks of age in CerS2ΔO/ΔO mice, and had increased by 10 weeks. Increased staining for denatured myelin basic protein was also apparent in 6-week-old CerS2ΔO/ΔO mice. By 16 weeks, CerS2ΔO/ΔO mice showed pronounced myelin atrophy, motor deficits, and axon beading, a hallmark of axon stress. 90% of CerS2ΔO/ΔO mice died between 16 and 26 weeks of age. This study highlights the importance of sphingolipid acyl chain length for the structural integrity of myelin, demonstrating how a modest reduction in lipid chain length causes exposure of a denatured myelin protein epitope and expansion of phagocytic microglia, followed by axon pathology, myelin degeneration, and motor deficits. Understanding the molecular trigger for microglial activation should aid the development of therapeutics for demyelinating and neurodegenerative diseases.


Subject(s)
Microglia , Myelin Sheath , Mice , Animals , Microglia/metabolism , Myelin Sheath/metabolism , Ceramides/metabolism , Sphingolipids/metabolism
2.
Eur J Neurosci ; 56(12): 6099-6114, 2022 12.
Article in English | MEDLINE | ID: mdl-36217300

ABSTRACT

Oligodendrocyte production and myelination continues lifelong in the central nervous system (CNS), and all stages of this process can be adaptively regulated by neuronal activity. While artificial exogenous stimulation of neuronal circuits greatly enhances oligodendrocyte progenitor cell (OPC) production and increases myelination during development, the extent to which physiological stimuli replicates this is unclear, particularly in the adult CNS when the rate of new myelin addition slows. Here, we used environmental enrichment (EE) to physiologically stimulate neuronal activity for 6 weeks in 9-week-old C57BL/six male and female mice and found no increase in compact myelin in the corpus callosum or somatosensory cortex. Instead, we observed a global increase in callosal axon diameter with thicker myelin sheaths, elongated paranodes and shortened nodes of Ranvier. These findings indicate that EE induced the dynamic structural remodelling of myelinated axons. Additionally, we observed a global increase in the differentiation of OPCs and pre-myelinating oligodendroglia in the corpus callosum and somatosensory cortex. Our findings of structural remodelling of myelinated axons in response to physiological neural stimuli during young adulthood provide important insights in understanding experience-dependent myelin plasticity throughout the lifespan and provide a platform to investigate axon-myelin interactions in a physiologically relevant context.


Subject(s)
Axons , Myelin Sheath , Animals , Male , Female , Mice , Mice, Inbred C57BL , Axons/physiology , Oligodendroglia/physiology , Brain , Cell Differentiation/physiology
3.
J Neurochem ; 148(4): 447-461, 2019 02.
Article in English | MEDLINE | ID: mdl-30225984

ABSTRACT

Myelin, the multilayered membrane surrounding many axons in the nervous system, increases the speed by which electrical signals travel along axons and facilitates neuronal communication between distant regions of the nervous system. However, how neuronal signals influence the myelinating process in the CNS is still largely unclear. Recent studies have significantly advanced this understanding, identifying important roles for neuronal activity in controlling oligodendrocyte development and their capacity of producing myelin in both developing and mature CNS. Here, we review these recent advances, and discuss potential mechanisms underpinning activity-dependent myelination and how remyelination may be stimulated via manipulating axonal activity, raising new questions for future research.


Subject(s)
Central Nervous System , Myelin Sheath , Neurogenesis , Oligodendroglia , Animals , Cell Differentiation/physiology , Humans
4.
Mol Cell Neurosci ; 90: 12-21, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29782918

ABSTRACT

Brain-Derived Neurotrophic Factor (BDNF) plays important roles in promoting myelination in the developing central nervous system (CNS), however the influence it exerts on oligodendrocyte development in vivo remains unclear. As BDNF knockout mice die in the perinatal period, we undertook a systematic developmental analysis of oligodendroglial lineage cells within multiple CNS regions of BDNF heterozygous (HET) mice. Our data identify that BDNF heterozygosity results in transient reductions in oligodendroglial lineage cell density and progression that are largely restricted to the optic nerve, whereas the corpus callosum, cerebral cortex, basal forebrain and spinal cord white matter tracts are unaffected. In the first two postnatal weeks, BDNF HET mice exhibit reductions in the density of oligodendroglial lineage cells, oligodendrocyte precursor cells (OPCs) and postmitotic oligodendrocytes selectively in the optic nerve, but not in the brain or spinal cord white matter tracts. However, this normalizes later in development. The overall proportion of OPCs and mature oligodendrocytes remains unchanged from P9 to P30 in all CNS regions. This study identifies that BDNF exerts transient effects on oligodendroglial lineage cells selectively in the optic nerve during postnatal development. Taken together, this provides compelling evidence that BDNF haploinsufficiency exerts modest effects upon oligodendroglial cell density and lineage progression in vivo, suggesting its major role is restricted to promoting oligodendrocyte myelination.

SELECTION OF CITATIONS
SEARCH DETAIL
...