Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (200)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37929988

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) is a portable neuroimaging methodology, more robust to motion and more cost-effective than functional magnetic resonance imaging (fMRI), which makes it highly suitable for conducting naturalistic studies of brain function and for use with developmental and clinical populations. Both fNIRS and fMRI methodologies detect changes in cerebral blood oxygenation during functional brain activation, and prior studies have shown high spatial and temporal correspondence between the two signals. There is, however, no quantitative comparison of the two signals collected simultaneously from the same subjects with whole-head fNIRS coverage. This comparison is necessary to comprehensively validate area-level activations and functional connectivity against the fMRI gold standard, which in turn has the potential to facilitate comparisons of the two signals across the lifespan. We address this gap by describing a protocol for simultaneous data collection of fMRI and fNIRS signals that: i) provides whole-head fNIRS coverage; ii) includes short-distance measurements for regression of the non-cortical, systemic physiological signal; and iii) implements two different methods for optode-to-scalp co-registration of fNIRS measurements. fMRI and fNIRS data from three subjects are presented, and recommendations for adapting the protocol to test developmental and clinical populations are discussed. The current setup with adults allows scanning sessions for an average of approximately 40 min, which includes both functional and structural scans. The protocol outlines the steps required to adapt the fNIRS equipment for use in the magnetic resonance (MR) environment, provides recommendations for both data recording and optode-to-scalp co-registration, and discusses potential modifications of the protocol to fit the specifics of the available MR-safe fNIRS system. Representative subject-specific responses from a flashing-checkerboard task illustrate the feasibility of the protocol to measure whole-head fNIRS signals in the MR environment. This protocol will be particularly relevant for researchers interested in validating fNIRS signals against fMRI across the lifespan.


Subject(s)
Magnetic Resonance Imaging , Spectroscopy, Near-Infrared , Adult , Humans , Magnetic Resonance Imaging/methods , Spectroscopy, Near-Infrared/methods , Brain/diagnostic imaging , Brain/physiology , Neuroimaging , Scalp
SELECTION OF CITATIONS
SEARCH DETAIL
...