Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37298658

ABSTRACT

In this study, the intrinsic surface-enhanced Raman spectroscopy (SERS)-based approach coupled with chemometric analysis was adopted to establish the biochemical fingerprint of SARS-CoV-2 infected human fluids: saliva and nasopharyngeal swabs. The numerical methods, partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC), facilitated the spectroscopic identification of the viral-specific molecules, molecular changes, and distinct physiological signatures of pathetically altered fluids. Next, we developed the reliable classification model for fast identification and differentiation of negative CoV(-) and positive CoV(+) groups. The PLS-DA calibration model was described by a great statistical value-RMSEC and RMSECV below 0.3 and R2cal at the level of ~0.7 for both type of body fluids. The calculated diagnostic parameters for SVMC and PLS-DA at the stage of preparation of calibration model and classification of external samples simulating real diagnostic conditions evinced high accuracy, sensitivity, and specificity for saliva specimens. Here, we outlined the significant role of neopterin as the biomarker in the prediction of COVID-19 infection from nasopharyngeal swab. We also observed the increased content of nucleic acids of DNA/RNA and proteins such as ferritin as well as specific immunoglobulins. The developed SERS for SARS-CoV-2 approach allows: (i) fast, simple and non-invasive collection of analyzed specimens; (ii) fast response with the time of analysis below 15 min, and (iii) sensitive and reliable SERS-based screening of COVID-19 disease.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Saliva/chemistry , Nasopharynx , RNA, Viral/genetics , Spectrum Analysis, Raman , Specimen Handling/methods , COVID-19 Testing
2.
ACS Sens ; 6(4): 1621-1635, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33792284

ABSTRACT

Recently, Porphyromonas gingivalis, the keystone pathogen implicated in the development of gum disease (periodontitis), was detected in the brains of Alzheimer's disease patients, opening up a fascinating possibility that it is also involved in the pathobiology of this neurodegenerative illness. To verify this hypothesis, an unbiased, specific, and sensitive method to detect this pathogen in biological specimens is needed. To this end, our interdisciplinary studies demonstrate that P. gingivalis can be easily identified by surface-enhanced Raman scattering (SERS). Moreover, based on SERS measurements, P. gingivalis can be distinguished from another common periodontal pathogen, Aggregatibacter actinomycetemcomitans, and also from ubiquitous oral Streptococcus spp. The results were confirmed by principal component analysis (PCA). Furthermore, we have shown that different P. gingivalis and A. actinomycetemcomitans strains can easily adsorb to silver-coated magnetic nanoparticles (Fe2O3@AgNPs). Thus, it is possible to magnetically separate investigated bacteria from other components of a specimen using the microfluidic chip. To obtain additional enhancement of the Raman signal, the NPs adsorbed to bacterial cells were magnetically attracted to the Si/Ag SERS platform. Afterward, the SERS spectra could be recorded. Such a time-saving procedure can be very helpful in rapid medical diagnostics and thus in starting the appropriate pharmacological therapy to prevent the development of periodontitis and associated comorbidities, e.g., Alzheimer's disease.


Subject(s)
Aggregatibacter actinomycetemcomitans , Periodontitis , Humans , Periodontitis/diagnosis , Porphyromonas gingivalis
3.
Cancers (Basel) ; 12(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182636

ABSTRACT

The circulating tumor cells (CTCs) isolation and characterization has a great potential for non-invasive biopsy. In the present research, the surface-enhanced Raman spectroscopy (SERS)-based assay utilizing magnetic nanoparticles and solid SERS-active support integrated in the external field assisted microfluidic device was designed for efficient isolation of CTCs from blood samples. Magnetic nanospheres (Fe2O3) were coated with SERS-active metal and then modified with p-mercaptobenzoic acid (p-MBA) which works simultaneously as a Raman reporter and linker to an antiepithelial-cell-adhesion-molecule (anti-EpCAM) antibodies. The newly developed laser-induced SERS-active silicon substrate with a very strong enhancement factor (up to 108) and high stability and reproducibility provide the additional extra-enhancement in the sandwich plasmonic configuration of immune assay which finally leads to increase the efficiency of detection. The sensitive immune recognition of cancer cells is assisted by the introducing of the controllable external magnetic field into the microfluidic chip. Moreover, the integration of the SERS-active platform and p-MBA-labeled immuno-Ag@Fe2O3 nanostructures with microfluidic device offers less sample and analytes demand, precise operation, increase reproducibly of spectral responses, and enables miniaturization and portability of the presented approach. In this work, we have also investigated the effect of varying expression of the EpCAM established by the Western Blot method supported by immunochemistry on the efficiency of CTCs' detection with the developed SERS method. We used four target cancer cell lines with relatively high (human metastatic prostate adenocarcinoma cells (LNCaP)), medium (human metastatic prostate adenocarcinoma cells (LNCaP)), weak (human metastatic prostate adenocarcinoma cells (LNCaP)), and no EpCAM expressions (cervical cancer cells (HeLa)) to estimate the limits of detection based on constructed calibration curves. Finally, blood samples from lung cancer patients were used to validate the efficiency of the developed method in clinical trials.

4.
J Biophotonics ; 13(5): e201960227, 2020 05.
Article in English | MEDLINE | ID: mdl-32022438

ABSTRACT

According to EU summary report on zoonoses, zoonotic agents and food-borne outbreaks in 2017, Campylobacter was the most commonly reported gastrointestinal bacterial pathogen in humans in the EU. Unfortunately, the standard methods for the detection of thermotolerant Campylobacter spp. in foods are time-consuming. Additionally, the qualified staff is obligatory. For this reason, new methods of pathogens detection are needed. The present work demonstrates that surface-enhanced Raman scattering (SERS) is a reliable and fast method for detection of Campylobacter spp. in food samples. The proposed method combines the SERS measurements performed on an Ag/Si substrate with two initial steps of the ISO standard procedure. Finally, the principal component analysis (PCA) allows for statistical classification of the studied bacteria. By applying the proposed ISO-SERS-PCA method in the case of Campylobacter bacteria the total detection time may be reduced from 7 to 8 days required by ISO method to 3 to 4 days in the case of SERS-based approach.


Subject(s)
Campylobacter , Food Microbiology , Animals , Bacteria , Humans , Spectrum Analysis, Raman
5.
Anal Bioanal Chem ; 411(20): 5347, 2019 08.
Article in English | MEDLINE | ID: mdl-31161319

ABSTRACT

The authors would like to call the reader's attention to the fact that unfortunately following information was missing in the original article: "Evelin Witkowska is supported by the Foundation of Polish Science (FNP)."

6.
Anal Bioanal Chem ; 411(10): 2001-2017, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30828759

ABSTRACT

The surface-enhanced Raman spectroscopy (SERS)-based analysis of bacteria suffers from the lack of a standard SERS detection protocol (type of substrates, excitation frequencies, and sampling methodologies) that could be employed throughout laboratories to produce repeatable and valuable spectral information. In this work, we have examined several factors influencing the spectrum and signal enhancement during SERS studies conducted on both Gram-negative and Gram-positive bacterial species: Escherichia coli and Bacillus subtilis, respectively. These factors can be grouped into those which are related to the structure and types of plasmonic systems used during SERS measurements and those that are associated with the culturing conditions, types of culture media, and method of biological sample preparation.


Subject(s)
Bacillus subtilis/chemistry , Escherichia coli/chemistry , Nanostructures/chemistry , Spectrum Analysis, Raman/methods , Bacillus subtilis/cytology , Bacillus subtilis/isolation & purification , Cell Culture Techniques , Culture Media/chemistry , Escherichia coli/cytology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Humans
7.
Nanomaterials (Basel) ; 9(3)2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30841516

ABSTRACT

The detection and monitoring of circulating tumor cells (CTCs) in blood is an important strategy for early cancer evidence, analysis, monitoring of therapeutic response, and optimization of cancer therapy treatments. In this work, tailor-made membranes (MBSP) for surface-enhanced Raman spectroscopy (SERS)-based analysis, which permitted the separation and enrichment of CTCs from blood samples, were developed. A thin layer of SERS-active metals deposited on polymer mat enhanced the Raman signals of CTCs and provided further insight into CTCs molecular and biochemical composition. The SERS spectra of all studied cells-prostate cancer (PC3), cervical carcinoma (HeLa), and leucocytes as an example of healthy (normal) cell-revealed significant differences in both the band positions and/or their relative intensities. The multivariate statistical technique based on principal component analysis (PCA) was applied to identify the most significant differences (marker bands) in SERS data among the analyzed cells and to perform quantitative analysis of SERS data. Based on a developed PCA algorithm, the studied cell types were classified with an accuracy of 95% in 2D PCA to 98% in 3D PCA. These results clearly indicate the diagnostic efficiency for the discrimination between cancer and normal cells. In our approach, we exploited the one-step technology that exceeds most of the multi-stage CTCs analysis methods used and enables simultaneous filtration, enrichment, and identification of the tumor cells from blood specimens.

8.
Nanomaterials (Basel) ; 8(9)2018 Aug 26.
Article in English | MEDLINE | ID: mdl-30149680

ABSTRACT

In this paper, we present novel type of Surface-enhanced Raman spectroscopy (SERS) platform, based on stainless steel wire mesh (SSWM) covered with thin silver layer. The stainless steel wire mesh, typically used in chemical engineering industry, is a cheap and versatile substrate for SERS platforms. SSWM consists of multiple steel wires with diameter of tens of micrometers, which gives periodical structure and high stiffness. Moreover, stainless steel provides great resistance towards organic and inorganic solvents and provides excellent heat dissipation. It is worth mentioning that continuous irradiation of the laser beam over the SERS substrate can be a source of significant increase in the local temperature of metallic nanostructures, which can lead to thermal degradation or fragmentation of the adsorbed analyte. Decomposition or fragmentation of the analysed sample usually causea a significant decrease in the intensity of recorded SERS bands, which either leads to false SERS responses or enables the analysis of spectral data. To our knowledge, we have developed for the first time the thermally resistant SERS platform. This type of SERS substrate, termed Ag/SSWM, exhibit high sensitivity (Enhancement Factor (EF) = 106) and reproducibility (Relative Standard Deviation (RSD) of 6.4%) towards detection of p-mercaptobenzoic acid (p-MBA). Besides, Ag/SSWM allows the specific detection and differentiation between Gram-positive and Gram-negative bacterial species: Escherichia coli and Bacillus subtilis in label-free and reproducible manner. The unique properties of designed substrate overcome the limitations associated with photo- and thermal degradation of sensitive bacterial samples. Thus, a distinctive SERS analysis of all kinds of chemical and biological samples at high sensitivity and selectivity can be performed on the developed SERS-active substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...