Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Comput ; 32(5): 887-911, 2020 05.
Article in English | MEDLINE | ID: mdl-32187002

ABSTRACT

As synchronized activity is associated with basic brain functions and pathological states, spike train synchrony has become an important measure to analyze experimental neuronal data. Many measures of spike train synchrony have been proposed, but there is no gold standard allowing for comparison of results from different experiments. This work aims to provide guidance on which synchrony measure is best suited to quantify the effect of epileptiform-inducing substances (e.g., bicuculline, BIC) in in vitro neuronal spike train data. Spike train data from recordings are likely to suffer from erroneous spike detection, such as missed spikes (false negative) or noise (false positive). Therefore, different timescale-dependent (cross-correlation, mutual information, spike time tiling coefficient) and timescale-independent (Spike-contrast, phase synchronization (PS), A-SPIKE-synchronization, A-ISI-distance, ARI-SPIKE-distance) synchrony measures were compared in terms of their robustness to erroneous spike trains. For this purpose, erroneous spike trains were generated by randomly adding (false positive) or deleting (false negative) spikes (in silico manipulated data) from experimental data. In addition, experimental data were analyzed using different spike detection threshold factors in order to confirm the robustness of the synchrony measures. All experimental data were recorded from cortical neuronal networks on microelectrode array chips, which show epileptiform activity induced by the substance BIC. As a result of the in silico manipulated data, Spike-contrast was the only measure that was robust to false-negative as well as false-positive spikes. Analyzing the experimental data set revealed that all measures were able to capture the effect of BIC in a statistically significant way, with Spike-contrast showing the highest statistical significance even at low spike detection thresholds. In summary, we suggest using Spike-contrast to complement established synchrony measures because it is timescale independent and robust to erroneous spike trains.


Subject(s)
Action Potentials/drug effects , Neurons/drug effects , Signal Processing, Computer-Assisted , Action Potentials/physiology , Animals , Bicuculline/pharmacology , Computer Simulation , Microelectrodes/microbiology , Models, Neurological , Neurons/physiology
2.
Beilstein J Nanotechnol ; 5: 1575-9, 2014.
Article in English | MEDLINE | ID: mdl-25247139

ABSTRACT

The growth of cortical neurons on three dimensional structures of spatially defined (structured) randomly oriented, as well as on vertically aligned, carbon nanotubes (CNT) is studied. Cortical neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures. These neuron cells attach preferentially on the CNT sidewalls of the vertically aligned CNT architecture instead than onto the tips of the individual CNT pillars.

3.
Biointerphases ; 7(1-4): 58, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22956466

ABSTRACT

Low impedance at the interface between tissue and conducting electrodes is of utmost importance for the electrical recording or stimulation of heart and brain tissue. A common way to improve the cell-metal interface and thus the signal-to-noise ratio of recordings, as well as the charge transfer for stimulation applications, is to increase the electrochemically active electrode surface area. In this paper, we propose a method to decrease the impedance of microelectrodes by the introduction of carbon nanotubes (CNTs), offering an extremely rough surface. In a multistage process, an array of multiple microelectrodes covered with high quality, tightly bound CNTs was realized. It is shown by impedance spectroscopy and cardiac myocyte recordings that the transducer properties of the carbon nanotube electrodes are superior to conventional gold and titanium nitride electrodes. These findings will be favorable for any kind of implantable heart electrodes and electrophysiology in cardiac myocyte cultures.


Subject(s)
Electrodes , Electrophysiologic Techniques, Cardiac/methods , Myocytes, Cardiac/physiology , Nanotubes, Carbon , Electric Impedance , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...