Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1016195, 2022.
Article in English | MEDLINE | ID: mdl-36600917

ABSTRACT

Tropical vines and lianas have evolved mechanisms to avoid mechanical damage during their climbing life histories. We explore the mechanical properties and stem development of a tropical climber that develops trellises in tropical rain forest canopies. We measured the young stems of Condylocarpon guianensis (Apocynaceae) that construct complex trellises via self-supporting shoots, attached stems, and unattached pendulous stems. The results suggest that, in this species, there is a size (stem diameter) and developmental threshold at which plant shoots will make the developmental transition from stiff young shoots to later flexible stem properties. Shoots that do not find a support remain stiff, becoming pendulous and retaining numerous leaves. The formation of a second TYPE II (lianoid) wood is triggered by attachment, guaranteeing increased flexibility of light-structured shoots that transition from self-supporting searchers to inter-connected net-like trellis components. The results suggest that this species shows a "hard-wired" development that limits self-supporting growth among the slender stems that make up a liana trellis. The strategy is linked to a stem-twining climbing mode and promotes a rapid transition to flexible trellis elements in cluttered densely branched tropical forest habitats. These are situations that are prone to mechanical perturbation via wind action, tree falls, and branch movements. The findings suggest that some twining lianas are mechanically fine-tuned to produce trellises in specific habitats. Trellis building is carried out by young shoots that can perform very different functions via subtle development changes to ensure a safe space occupation of the liana canopy.

2.
Front Robot AI ; 7: 64, 2020.
Article in English | MEDLINE | ID: mdl-33501232

ABSTRACT

Climbing plants are being increasingly viewed as models for bioinspired growing robots capable of spanning voids and attaching to diverse substrates. We explore the functional traits of the climbing cactus Selenicereus setaceus (Cactaceae) from the Atlantic forest of Brazil and discuss the potential of these traits for robotics applications. The plant is capable of growing through highly unstructured habitats and attaching to variable substrates including soil, leaf litter, tree surfaces, rocks, and fine branches of tree canopies in wind-blown conditions. Stems develop highly variable cross-sectional geometries at different stages of growth. They include cylindrical basal stems, triangular climbing stems and apical star-shaped stems searching for supports. Searcher stems develop relatively rigid properties for a given cross-sectional area and are capable of spanning voids of up to 1 m. Optimization of rigidity in searcher stems provide some potential design ideas for additive engineering technologies where climbing robotic artifacts must limit materials and mass for curbing bending moments and buckling while climbing and searching. A two-step attachment mechanism involves deployment of recurved, multi-angled spines that grapple on to wide ranging surfaces holding the stem in place for more solid attachment via root growth from the stem. The cactus is an instructive example of how light mass searchers with a winged profile and two step attachment strategies can facilitate traversing voids and making reliable attachment to a wide range of supports and surfaces.

3.
J R Soc Interface ; 11(99)2014 10 06.
Article in English | MEDLINE | ID: mdl-25079869

ABSTRACT

In the Neotropics, the genus Hydrangea of the popular ornamental hortensia family is represented by climbing species that strongly cling to their support surface by means of adhesive roots closely positioned along specialized anchoring stems. These root-climbing hortensia species belong to the nearly exclusive American Hydrangea section Cornidia and generally are long lianescent climbers that mostly flower and fructify high in the host tree canopy. The Mexican species Hydrangea seemannii, however, encompasses not only long lianescent climbers of large vertical rock walls and coniferous trees, but also short 'shrub-like' climbers on small rounded boulders. To investigate growth form plasticity in root-climbing hortensia species, we tested the hypothesis that support variability (e.g. differences in size and shape) promotes plastic responses observable at the mechanical, structural and anatomical level. Stem bending properties, architectural axis categorization, tissue organization and wood density were compared between boulder and long-vertical tree-climbers of H. seemannii. For comparison, the mechanical patterns of a closely related, strictly long-vertical tree-climbing species were investigated. Hydrangea seemannii has fine-tuned morphological, mechanical and anatomical responses to support variability suggesting the presence of two alternative root-climbing strategies that are optimized for their particular environmental conditions. Our results suggest that variation of some stem anatomical traits provides a buffering effect that regulates the mechanical and hydraulic demands of two distinct plant architectures. The adaptive value of observed plastic responses and the importance of considering growth form plasticity in evolutionary and conservation studies are discussed.


Subject(s)
Hydrangea/anatomy & histology , Hydrangea/physiology , Movement/physiology , Plant Roots/physiology , Analysis of Variance , Biomechanical Phenomena , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL