Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Rhythms ; 36(1): 35-54, 2021 02.
Article in English | MEDLINE | ID: mdl-33491541

ABSTRACT

Not 1 year has passed since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Since its emergence, great uncertainty has surrounded the potential for COVID-19 to establish as a seasonally recurrent disease. Many infectious diseases, including endemic human coronaviruses, vary across the year. They show a wide range of seasonal waveforms, timing (phase), and amplitudes, which differ depending on the geographical region. Drivers of such patterns are predominantly studied from an epidemiological perspective with a focus on weather and behavior, but complementary insights emerge from physiological studies of seasonality in animals, including humans. Thus, we take a multidisciplinary approach to integrate knowledge from usually distinct fields. First, we review epidemiological evidence of environmental and behavioral drivers of infectious disease seasonality. Subsequently, we take a chronobiological perspective and discuss within-host changes that may affect susceptibility, morbidity, and mortality from infectious diseases. Based on photoperiodic, circannual, and comparative human data, we not only identify promising future avenues but also highlight the need for further studies in animal models. Our preliminary assessment is that host immune seasonality warrants evaluation alongside weather and human behavior as factors that may contribute to COVID-19 seasonality, and that the relative importance of these drivers requires further investigation. A major challenge to predicting seasonality of infectious diseases are rapid, human-induced changes in the hitherto predictable seasonality of our planet, whose influence we review in a final outlook section. We conclude that a proactive multidisciplinary approach is warranted to predict, mitigate, and prevent seasonal infectious diseases in our complex, changing human-earth system.


Subject(s)
COVID-19/prevention & control , Circadian Rhythm/physiology , Communicable Diseases/transmission , SARS-CoV-2/isolation & purification , Seasons , Animals , COVID-19/epidemiology , COVID-19/virology , Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Environment , Epidemics , Host-Pathogen Interactions , Humans , SARS-CoV-2/physiology
3.
Epidemiol Infect ; 144(10): 2064-76, 2016 07.
Article in English | MEDLINE | ID: mdl-26931455

ABSTRACT

Viral respiratory infections continue to pose a major global healthcare burden. At the community level, the co-circulation of respiratory viruses is common and yet studies generally focus on single aetiologies. We conducted the first comprehensive epidemiological analysis to encompass all major respiratory viruses in a single population. Using extensive multiplex PCR diagnostic data generated by the largest NHS board in Scotland, we analysed 44230 patient episodes of respiratory illness that were simultaneously tested for 11 virus groups between 2005 and 2013, spanning the 2009 influenza A pandemic. We measured viral infection prevalence, described co-infections, and identified factors independently associated with viral infection using multivariable logistic regression. Our study provides baseline measures and reveals new insights that will direct future research into the epidemiological consequences of virus co-circulation. In particular, our study shows that (i) human coronavirus infections are more common during influenza seasons and in co-infections than previously recognized, (ii) factors associated with co-infection differ from those associated with viral infection overall, (iii) virus prevalence has increased over time especially in infants aged <1 year, and (iv) viral infection risk is greater in the post-2009 pandemic era, likely reflecting a widespread change in the viral population that warrants further investigation.


Subject(s)
Coinfection/epidemiology , Respiratory Tract Infections/epidemiology , Virus Diseases/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Coinfection/virology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Multiplex Polymerase Chain Reaction , Prevalence , Respiratory Tract Infections/virology , Scotland/epidemiology , Seasons , Virus Diseases/virology , Young Adult
4.
Epidemiol Infect ; 142(9): 1813-25, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24308445

ABSTRACT

Although the compartmentalization of poultry industry components has substantial economic implications, and is therefore a concept with huge significance to poultry industries worldwide, the current requirements for compartment status are generic to all OIE member countries. We examined the consequences for potential outbreaks of highly pathogenic avian influenza in the British poultry industry using a metapopulation modelling framework. This framework was used to assess the effectiveness of compartmentalization relative to zoning control, utilizing empirical data to inform the structure of potential epidemiological contacts within the British poultry industry via network links and spatial proximity. Conditions were identified where, despite the efficient isolation of poultry compartments through the removal of network-mediated links, spatially mediated airborne spread enabled spillover of infection with nearby premises making compartmentalization a more 'risky' option than zoning control. However, when zoning control did not effectively inhibit long-distance network links, compartmentalization became a relatively more effective control measure than zoning. With better knowledge of likely distance ranges for airborne spread, our approach could help define an appropriate minimum inter-farm distance to provide more specific guidelines for compartmentalization in Great Britain.


Subject(s)
Communicable Disease Control/methods , Influenza in Birds/prevention & control , Models, Biological , Poultry , Animals , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Influenza in Birds/epidemiology , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...