Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Epidemiol ; 47(1): 78-94, 2023 02.
Article in English | MEDLINE | ID: mdl-36047334

ABSTRACT

Linkage analysis maps genetic loci for a heritable trait by identifying genomic regions with excess relatedness among individuals with similar trait values. Analysis may be conducted on related individuals from families, or on samples of unrelated individuals from a population. For allelically heterogeneous traits, population-based linkage analysis can be more powerful than genotypic-association analysis. Here, we focus on linkage analysis in a population sample, but use sequences rather than individuals as our unit of observation. Earlier investigations of sequence-based linkage mapping relied on known sequence relatedness, whereas we infer relatedness from the sequence data. We propose two ways to associate similarity in relatedness of sequences with similarity in their trait values and compare the resulting linkage methods to two genotypic-association methods. We also introduce a procedure to label case sequences as potential carriers or noncarriers of causal variants after an association has been found. This post hoc labeling of case sequences is based on inferred relatedness to other case sequences. Our simulation results indicate that methods based on sequence relatedness improve localization and perform as well as genotypic-association methods for detecting rare causal variants. Sequence-based linkage analysis therefore has potential to fine-map allelically heterogeneous disease traits.


Subject(s)
Models, Genetic , Quantitative Trait Loci , Humans , Chromosome Mapping/methods , Phenotype , Genotype , Genetic Linkage , Linkage Disequilibrium
2.
BMC Bioinformatics ; 20(1): 73, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30755155

ABSTRACT

BACKGROUND: Reconstruction of protein-protein interaction networks (PPIN) has been riddled with controversy for decades. Particularly, false-negative and -positive interactions make this progress even more complicated. Also, lack of a standard PPIN limits us in the comparison studies and results in the incompatible outcomes. Using an evolution-based concept, i.e. interolog which refers to interacting orthologous protein sets, pave the way toward an optimal benchmark. RESULTS: Here, we provide an R package, IMMAN, as a tool for reconstructing Interolog Protein Network (IPN) by integrating several Protein-protein Interaction Networks (PPINs). Users can unify different PPINs to mine conserved common networks among species. IMMAN is designed to retrieve IPNs with different degrees of conservation to engage prediction analysis of protein functions according to their networks. CONCLUSIONS: IPN consists of evolutionarily conserved nodes and their related edges regarding low false positive rates, which can be considered as a gold standard network in the contexts of biological network analysis regarding to those PPINs which is derived from.


Subject(s)
Data Mining , Protein Interaction Mapping/methods , Protein Interaction Maps , Software , Animals , Benchmarking , Humans
3.
Brief Bioinform ; 20(2): 717-731, 2019 03 25.
Article in English | MEDLINE | ID: mdl-29726962

ABSTRACT

With the advent of high-throughput technologies leading to big data generation, increasing number of gene signatures are being published to predict various features of diseases such as prognosis and patient survival. However, to use these signatures for identifying therapeutic targets, use of additional bioinformatic tools is indispensible part of research. Here, we have generated a pipeline comprised of nearly 15 bioinformatic tools and enrichment statistical methods to propose and validate a drug combination strategy from already approved drugs and present our approach using published pan-cancer epithelial-mesenchymal transition (EMT) signatures as a case study. We observed that histone deacetylases were critical targets to tune expression of multiple epithelial versus mesenchymal genes. Moreover, SRC and IKBK were the principal intracellular kinases regulating multiple signaling pathways. To confirm the anti-EMT efficacy of the proposed target combination in silico, we validated expression of targets in mesenchymal versus epithelial subtypes of ovarian cancer. Additionally, we inhibited the pinpointed proteins in vitro using an invasive lung cancer cell line. We found that whereas low-dose mono-therapy failed to limit cell dispersion from collagen spheroids in a microfluidic device as a metric of EMT, the combination fully inhibited dissociation and invasion of cancer cells toward cocultured endothelial cells. Given the approval status and safety profiles of the suggested drugs, the proposed combination set can be considered in clinical trials.


Subject(s)
Computational Biology , Histone Deacetylases/metabolism , I-kappa B Kinase/metabolism , Neoplasms/pathology , src-Family Kinases/metabolism , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplasms/metabolism
4.
Database (Oxford) ; 2015: bav037, 2015.
Article in English | MEDLINE | ID: mdl-25911152

ABSTRACT

Conventional proteomics has discovered a wide gap between protein sequences and biological functions. The third generation of proteomics was provoked to bridge this gap. Targeted and untargeted post-translational modification (PTM) studies are the most important parts of today's proteomics. Considering the expensive and time-consuming nature of experimental methods, computational methods are developed to study, analyze, predict, count and compute the PTM annotations on proteins. The enrichment analysis softwares are among the common computational biology and bioinformatic software packages. The focus of such softwares is to find the probability of occurrence of the desired biological features in any arbitrary list of genes/proteins. We introduce Post-translational modification Enrichment Integration and Matching Analysis (PEIMAN) software to explore more probable and enriched PTMs on proteins. Here, we also represent the statistics of detected PTM terms used in enrichment analysis in PEIMAN software based on the latest released version of UniProtKB/Swiss-Prot. These results, in addition to giving insight to any given list of proteins, could be useful to design targeted PTM studies for identification and characterization of special chemical groups. Database URL: http://bs.ipm.ir/softwares/PEIMAN/


Subject(s)
Data Mining/methods , Databases, Protein , Molecular Sequence Annotation/methods , Protein Processing, Post-Translational , Software , Animals , Humans , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...