Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 157(19): 194901, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36414436

ABSTRACT

The response of soft colloids to crowding depends sensitively on the particles' compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.


Subject(s)
Colloids , Polyethylene Glycols , Nanogels , Anisotropy , Polyethylene Glycols/chemistry , Colloids/chemistry
2.
Langmuir ; 38(14): 4351-4363, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35349289

ABSTRACT

Microgels, cross-linked polymers with submicrometer size, are ideal soft model systems. While spherical microgels have been studied extensively, anisotropic microgels have hardly been investigated. In this study, we compare the interfacial deformation and assembly of anisotropic core-shell and hollow microgels. The core-shell microgel consists of an elliptical core of hematite covered with a thin silica layer and a thin shell made of poly(N-isopropylacrylamide). The hollow microgels were obtained after a two-step etching procedure of the inorganic core. The behavior of these microgels at the oil-water interface was investigated in a Langmuir-Blodgett trough combined with ex situ atomic force microscopy. First, the influence of the architecture of anisotropic microgels on their spreading at the interface was investigated experimentally and by dissipative particle dynamic simulations. Hereby, the importance of the local shell thickness on the lateral and longitudinal interfacial deformation was highlighted as well as the differences between the core-shell and hollow architectures. The shape of the compression isotherms as well as the dimensions, ordering, and orientation of the microgels at the different compressions were analyzed. Due to their anisotropic shape and stiffness, both anisotropic microgels were found to exhibit significant capillary interactions with a preferential side-to-side assembly leading to stable microgel clusters at low interfacial coverage. Such capillary interactions were found to decrease in the case of the more deformable hollow anisotropic microgels. Consequently, anisotropic hollow microgels were found to distribute more evenly at high surface pressure compared to stiffer core-shell microgels. Our findings emphasize the complex interplay between the colloid design, anisotropy, and softness on the interfacial assembly and the opportunities it therefore offers to create more complex ordered interfaces.

3.
Langmuir ; 38(17): 5063-5080, 2022 May 03.
Article in English | MEDLINE | ID: mdl-34586813

ABSTRACT

Anisotropic, submicrometer-sized particles are versatile systems providing interesting features in creating ordering in two-dimensional systems. Combining hard ellipsoids with a soft shell further enhances the opportunities to trigger and control order and alignment. In this work, we report rich 2D phase behavior and show how softness affects the ordering of anisotropic particles at fluid oil-water interfaces. Three different core-shell systems were synthesized such that they have the same elliptical hematite-silica core but differ with respect to thickness and stiffness of the soft microgel shell. Compression isotherms, the shape of individual core-shell microgels, and their 2D order at a decane-water interface are investigated by means of the Langmuir-Blodgett technique combined with ex-situ atomic force microscopy (AFM) imaging as well as dissipative particle dynamics (DPD) simulations. We show how the softness, size, and anisotropy of the microgel shell affect the side-to-side vs tip-to-tip ordering of anisotropic hybrid microgels as well as the alignment with respect to the direction of compression in the Langmuir trough. A large, soft microgel shell leads to an ordered structure with tip-to-tip alignment directed perpendicular to the direction of compression. In contrast, a thin and harder microgel shell leads to side-to-side ordering orientated parallel to the compression direction. In addition, the thin and harder microgel shell induces clustering of the microgels in the dilute state, indicating the presence of strong capillary interactions. Our findings highlight the relevance of softness for the complex ordering of anisotropic hybrid microgels at interfaces.

4.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009978

ABSTRACT

This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of -36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.

5.
Nano Lett ; 19(11): 8161-8170, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31613114

ABSTRACT

The development of soft anisotropic building blocks is of great interest for various applications in soft matter. Furthermore, such systems would be important model systems for ordering phenomena in fundamental soft matter science. In this work, we address the challenge of creating hollow and anisotropically shaped thermoresponsive microgels, polymeric networks with a solvent filled cavity in their center that are swollen in a good solvent. Sacrificial elliptical hematite silica particles were utilized as a template for the synthesis of a cross-linked N-isopropylacrylamide (NIPAm) shell. By varying the amount of NIPAm, two anisotropic microgels were synthesized with either a thin or thick microgel shell. We characterized these precursor core-shell and the resulting hollow microgels using a combination of light, X-ray, and neutron scattering. New form factor models, accounting for the cavity, the polymer distribution and the anisotropy, have been developed for fitting the scattering data. With such models, we demonstrated the existence of the cavity and simultaneously the anisotropic character of the microgels. Furthermore, we show that the thickness of the shell has a major influence on the shape and the cavity dimension of the microgel after etching of the sacrificial core. Finally, the effect of temperature is investigated, showing that changes in size, softness, and aspect ratio are triggered by temperature.

6.
Ann N Y Acad Sci ; 1060: 283-93, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16597777

ABSTRACT

Music therapy is the therapeutic use of music and musical activities in the treatment of somatic and mental diseases. In the last decades it has developed from a quasi-professional working field into an increasingly evidence-based treatment for various diseases. Selected outcome studies that were carried out in order to give music therapy a scientific and empirical base are presented in this article. Results show that music therapy is an effective intervention for patients with chronic pain, children with migraine, and patients suffering from chronic tinnitus. This positive outcome, in combination with the observed moderate to large effect sizes in different metanalyses, provides evidence for the use of music therapy in specific clinical fields. Future research should focus on studies that compare well-defined music therapy interventions to standard treatment.


Subject(s)
Migraine Disorders/therapy , Music Therapy/methods , Pain Management , Tinnitus/therapy , Treatment Outcome , Aged , Child , Female , Humans , Male , Middle Aged , Models, Theoretical , Placebos
7.
Ann N Y Acad Sci ; 1060: 271-82, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16597776

ABSTRACT

What needs to be done on the long road to evidence-based music therapy? First of all, an adequate research strategy is required. For this purpose the general methodology for therapy research should be adopted. Additionally, music therapy needs a variety of methods of allied fields to contribute scientific findings, including mathematics, natural sciences, behavioral and social sciences, as well as the arts. Pluralism seems necessary as well as inevitable. At least two major research problems can be identified, however, that make the path stony: the problem of specificity and the problem of eclecticism. Neuroscientific research in music is giving rise to new ideas, perspectives, and methods; they seem to be promising prospects for a possible contribution to a theoretical and empirical scientific foundation for music therapy. Despite the huge heterogeneity of theoretical approaches in music therapy, an integrative model of working ingredients in music therapy is useful as a starting point for empirical studies in order to question what specifically works in music therapy. For this purpose, a heuristic model, consisting of five music therapy working factors (attention modulation, emotion modulation, cognition modulation, behavior modulation, and communication modulation) has been developed by the Center for Music Therapy Research (Viktor Dulger Institute) in Heidelberg. Evidence shows the effectiveness of music therapy for treating certain diseases, but the question of what it is in music therapy that works remains largely unanswered. The authors conclude with some questions to neuroscientists, which we hope may help elucidate relevant aspects of a possible link between the two disciplines.


Subject(s)
Mental Disorders/therapy , Music Therapy/methods , Music , Acoustic Stimulation , Cognition Disorders/therapy , Communication , Humans , Models, Neurological , Research/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...