Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Magn Reson Imaging ; 111: 138-147, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729225

ABSTRACT

OBJECTIVES: To explore the potential and performance of quantitative and semi-quantitative parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on compressed sensing volumetric interpolated breath-hold (CS-VIBE) examination in the differential diagnosis of thyroid nodules. MATERIALS AND METHODS: A total of 208 patients with 259 thyroid nodules scheduled for surgery operation were prospectively recruited. All participants underwent routine and DCE-MRI. DCE-MRI quantitative parameters [Ktrans, Kep, Ve], semi-quantitative parameters [wash-in, wash-out, time to peak (TTP), arrival time (AT), peak enhancement intensity (PEI), and initial area under curve in 60 s (iAUC)] and time-intensity curve (TIC) types were analyzed. Differential diagnostic performances were assessed using area under the receiver operating characteristic curve (AUC) and compared with the Delong test. RESULTS: Ktrans, Kep, Ve, wash-in, wash-out, PEI and iAUC were statistically significantly different between malignant and benign nodules (P < 0.001). Among these parameters, ROC analysis revealed that Ktrans showed the highest diagnostic performance in the differentiation of benign and malignant nodules, followed by wash-in. ROC analysis also revealed that Ktrans achieved the best diagnostic performance for distinguishing papillary thyroid carcinoma (PTC) from non-PTC, follicular adenoma (FA) from non-FA, nodular goiter (NG) from non-NG, with AUC values of 0.854, 0.895 and 0.609, respectively. Type III curve is frequently observed in benign thyroid nodules, accounting for 77.4% (82/106). While malignant nodules are more common in type II, accounting for 57.5% (88/153). CONCLUSION: Thyroid examination using CS-VIBE based DCE-MRI is a feasible, non-invasive method to identify benign and malignant thyroid nodules and pathological types.

2.
Insights Imaging ; 15(1): 112, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713334

ABSTRACT

OBJECTIVE: To determine the optimal scan duration for ultrafast DCE-MRI in effectively differentiating benign from malignant breast lesions. METHODS: The study prospectively recruited participants who underwent breast ultrafast DCE-MRI from September 2021 to March 2023. A 30-phase breast ultrafast DCE-MRI on a 3.0-T MRI system was conducted with a 4.5-s temporal resolution. Scan durations ranged from 40.5 s to 135.0 s, during which the analysis is performed at three-phase intervals, forming eight dynamic sets (scan duration [SD]40.5s: 40.5 s, SD54s: 54.0 s, SD67.5s: 67.5 s, SD81s: 81.0 s, SD94.5s: 94.5 s, SD108s: 108.0 s, SD121.5s: 121.5 s, and SD135s: 135.0 s). Two ultrafast DCE-MRI parameters, maximum slope (MS) and initial area under the curve in 60 s (iAUC), were calculated for each dynamic set and compared between benign and malignant lesions. Areas under the receiver operating characteristic curve (AUCs) were used to assess their diagnostic performance. RESULTS: A total of 140 women (mean age, 47 ± 11 years) with 151 lesions were included. MS and iAUC from eight dynamic sets exhibited significant differences between benign and malignant lesions (all p < 0.05), except iAUC at SD40.5s. The AUC of MS (AUC = 0.804) and iAUC (AUC = 0.659) at SD67.5s were significantly higher than their values at SD40.5s (AUC = 0.606 and 0.516; corrected p < 0.05). No significant differences in AUCs for MS and iAUC were observed from SD67.5s to SD135s (all corrected p > 0.05). CONCLUSIONS: Ultrafast DCE-MRI with a 67.5-s scan duration appears optimal for effectively differentiating malignant from benign breast lesions. CRITICAL RELEVANCE STATEMENT: By evaluating scan durations (40.5-135 s) and analyzing two ultrafast DCE-MRI parameters, we found a scan duration of 67.5 s optimal for discriminating between these lesions and offering a balance between acquisition time and diagnostic efficacy. KEY POINTS: Ultrafast DCE-MRI can effectively differentiate malignant from benign breast lesions. A minimum of 67.5-sec ultrafast DCE-MRI scan duration is required to differentiate benign and malignant lesions. Extending the scan duration beyond 67.5 s did not significantly improve diagnostic accuracy.

3.
Eur J Radiol Open ; 12: 100567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711678

ABSTRACT

Objectives: To evaluate an optimized deep leaning-based image post-processing technique in lumbar spine MRI at 0.55 T in terms of image quality and image acquisition time. Materials and methods: Lumbar spine imaging was conducted on 18 patients using a 0.55 T MRI scanner, employing conventional (CDLR) and advanced (ADLR) deep learning-based post-processing techniques. Two musculoskeletal radiologists visually evaluated the images using a 5-point Likert scale to assess image quality and resolution. Quantitative assessment in terms of signal intensities (SI) and contrast ratios was performed by region of interest measurements in different body-tissues (vertebral bone, intervertebral disc, spinal cord, cerebrospinal fluid and autochthonous back muscles) to investigate differences between CDLR and ADLR sequences. Results: The images processed with the advanced technique (ADLR) were rated superior to the conventional technique (CDLR) in terms of signal/contrast, resolution, and assessability of the spinal canal and neural foramen. The interrater agreement was moderate for signal/contrast (ICC = 0.68) and good for resolution (ICC = 0.77), but moderate for spinal canal and neuroforaminal assessability (ICC = 0.55). Quantitative assessment showed a higher contrast ratio for fluid-sensitive sequences in the ADLR images. The use of ADLR reduced image acquisition time by 44.4%, from 14:22 min to 07:59 min. Conclusions: Advanced deep learning-based image reconstruction algorithms improve the visually perceived image quality in lumbar spine imaging at 0.55 T while simultaneously allowing to substantially decrease image acquisition times. Clinical relevance: Advanced deep learning-based image post-processing techniques (ADLR) in lumbar spine MRI at 0.55 T significantly improves image quality while reducing image acquisition time.

4.
Abdom Radiol (NY) ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662208

ABSTRACT

PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T2-weighted MR imaging (T2WI) for gastric cancer (GC). METHODS: 112 patients with GCs undergoing gastric MRI were prospectively enrolled between Aug 2022 and Dec 2022. Axial DLSB-T2WI and BLADE-T2WI of stomach were scanned with same spatial resolution. Three radiologists independently evaluated the image qualities using a 5-scale Likert scales (IQS) in terms of lesion delineation, gastric wall boundary conspicuity, and overall image quality. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated in measurable lesions. T staging was conducted based on the results of both sequences for GC patients with gastrectomy. Pairwise comparisons between DLSB-T2WI and BLADE-T2WI were performed using the Wilcoxon signed-rank test, paired t-test, and chi-squared test. Kendall's W, Fleiss' Kappa, and intraclass correlation coefficient values were used to determine inter-reader reliability. RESULTS: Against BLADE, DLSB reduced total acquisition time of T2WI from 495 min (mean 4:42 per patient) to 33.6 min (18 s per patient), with better overall image quality that produced 9.43-fold, 8.00-fold, and 18.31-fold IQS upgrading against BALDE, respectively, in three readers. In 69 measurable lesions, DLSB-T2WI had higher mean SNR and higher CNR than BLADE-T2WI. Among 71 patients with gastrectomy, DLSB-T2WI resulted in comparable accuracy to BLADE-T2WI in staging GCs (P > 0.05). CONCLUSIONS: DLSB-T2WI demonstrated shorter acquisition time, better image quality, and comparable staging accuracy, which could be an alternative to BLADE-T2WI for gastric cancer imaging.

5.
Eur J Radiol ; 175: 111451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593573

ABSTRACT

PURPOSE: To evaluate a deep learning reconstruction for turbo spin echo (DLR-TSE) sequence of ankle magnetic resonance imaging (MRI) in terms of acquisition time, image quality, and lesion detectability by comparing with conventional TSE. METHODS: Between March 2023 and May 2023, patients with an indication for ankle MRI were prospectively enrolled. Each patient underwent a conventional TSE protocol and a prospectively undersampled DLR-TSE protocol. Four experienced radiologists independently assessed image quality using a 5-point scale and reviewed structural abnormalities. Image quality assessment included overall image quality, differentiation of anatomic details, diagnostic confidence, artifacts, and noise. Interchangeability analysis was performed to evaluate the equivalence of DLR-TSE relative to conventional TSE for detection of structural pathologies. RESULTS: In total, 56 patients were included (mean age, 32.6 ± 10.6 years; 35 men). The DLR-TSE (233 s) protocol enabled a 57.4 % reduction in total acquisition time, compared with the conventional TSE protocol (547 s). DLR-TSE images had superior overall image quality, fewer artifacts, and less noise (all P < 0.05), compared with conventional TSE images, according to mean ratings by the four readers. Differentiation of anatomic details, diagnostic confidence, and assessments of structural abnormalities showed no differences between the two techniques (P > 0.05). Furthermore, DLR-TSE demonstrated diagnostic equivalence with conventional TSE, based on interchangeability analysis involving all analyzed structural abnormalities. CONCLUSION: DLR can prospectively accelerate conventional TSE to a level comparable with a 4-minute comprehensive examination of the ankle, while providing superior image quality and similar lesion detectability in clinical practice.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Humans , Male , Female , Magnetic Resonance Imaging/methods , Adult , Prospective Studies , Ankle Joint/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Middle Aged , Ankle/diagnostic imaging , Artifacts
6.
Front Oncol ; 14: 1304187, 2024.
Article in English | MEDLINE | ID: mdl-38525415

ABSTRACT

Purpose: To identify the clinical and genetic variables associated with rim enhancement of pancreatic ductal adenocarcinoma (PDAC) and to develop a dynamic contrast-enhanced (DCE) MRI-based radiomics model for predicting the genetic status from next-generation sequencing (NGS). Materials and methods: Patients with PDAC, who underwent pretreatment pancreatic DCE-MRI between November 2019 and July 2021, were eligible in this prospective study. Two radiologists evaluated presence of rim enhancement in PDAC, a known radiological prognostic indicator, on DCE MRI. NGS was conducted for the tissue from the lesion. The Mann-Whitney U and Chi-square tests were employed to identify clinical and genetic variables associated with rim enhancement in PDAC. For continuous variables predicting rim enhancement, the cutoff value was set based on the Youden's index from the receiver operating characteristic (ROC) curve. Radiomics features were extracted from a volume-of-interest of PDAC on four DCE maps (Ktrans, Kep, Ve, and iAUC). A random forest (RF) model was constructed using 10 selected radiomics features from a pool of 392 original features. This model aimed to predict the status of significant NGS variables associated with rim enhancement. The performance of the model was validated using test set. Results: A total of 55 patients (32 men; median age 71 years) were randomly assigned to the training (n = 41) and test (n = 14) sets. In the training set, KRAS, TP53, CDKN2A, and SMAD4 mutation rates were 92.3%, 61.8%, 14.5%, and 9.1%, respectively. Tumor size and KRAS variant allele frequency (VAF) differed between rim-enhancing (n = 12) and nonrim-enhancing (n = 29) PDACs with a cutoff of 17.22%. The RF model's average AUC from 10-fold cross-validation for predicting KRAS VAF status was 0.698. In the test set comprising 6 tumors with low KRAS VAF and 8 with high KRAS VAF, the RF model's AUC reached 1.000, achieving a sensitivity of 75.0%, specificity of 100% and accuracy of 87.5%. Conclusion: Rim enhancement of PDAC is associated with KRAS VAF derived from NGS-based genetic information. For predicting the KRAS VAF status in PDAC, a radiomics model based on DCE maps showed promising results.

7.
Magn Reson Imaging ; 109: 211-220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513791

ABSTRACT

RATIONALE AND OBJECTIVES: MRI reconstruction of undersampled data using a deep learning (DL) network has been recently performed as part of accelerated imaging. Herein, we compared DL-reconstructed T2-weighted image (T2-WI) to conventional T2-WI regarding image quality and degenerative lesion detection. MATERIALS AND METHODS: Sixty-two patients underwent C-spine (n = 27) or L-spine (n = 35) MRIs, including conventional and DL-reconstructed T2-WI. Image quality was assessed with non-uniformity measurement and 4-scale grading of structural visibility. Three readers (R1, R2, R3) independently assessed the presence and types of degenerative lesions. Student t-test was used to compare non-uniformity measurements. Interprotocol and interobserver agreement of structural visibility was analyzed with Wilcoxon signed-rank test and weighted-κ values, respectively. The diagnostic equivalence of degenerative lesion detection between two protocols was assessed with interchangeability test. RESULTS: The acquisition time of DL-reconstructed images was reduced to about 21-58% compared to conventional images. Non-uniformity measurement was insignificantly different between the two images (p-value = 0.17). All readers rated DL-reconstructed images as showing the same or superior structural visibility compared to conventional images. Significantly improved visibility was observed at disk margin of C-spine (R1, p < 0.001; R2, p = 0.04) and dorsal root ganglia (R1, p = 0.03; R3, p = 0.02) and facet joint (R1, p = 0.04; R2, p < 0.001; R3, p = 0.03) of L-spine. Interobserver agreements of image quality were variable in each structure. Clinical interchangeability between two protocols for degenerative lesion detection was verified showing <5% in the upper bounds of 95% confidence intervals of agreement rate differences. CONCLUSIONS: DL-reconstructed T2-WI demonstrates comparable image quality and diagnostic performance with conventional T2-WI in spine imaging, with reduced acquisition time.


Subject(s)
Deep Learning , Humans , Magnetic Resonance Imaging/methods
8.
Eur J Radiol Open ; 12: 100557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38495213

ABSTRACT

Purpose: The objective of this study was to implement a 5-minute MRI protocol for the shoulder in routine clinical practice consisting of accelerated 2D turbo spin echo (TSE) sequences with deep learning (DL) reconstruction at 1.5 and 3 Tesla, and to compare the image quality and diagnostic performance to that of a standard 2D TSE protocol. Methods: Patients undergoing shoulder MRI between October 2020 and June 2021 were prospectively enrolled. Each patient underwent two MRI examinations: first a standard, fully sampled TSE (TSES) protocol reconstructed with a standard reconstruction followed by a second fast, prospectively undersampled TSE protocol with a conventional parallel imaging undersampling pattern reconstructed with a DL reconstruction (TSEDL). Image quality and visualization of anatomic structures as well as diagnostic performance with respect to shoulder lesions were assessed using a 5-point Likert-scale (5 = best). Interchangeability analysis, Wilcoxon signed-rank test and kappa statistics were performed to compare the two protocols. Results: A total of 30 participants was included (mean age 50±15 years; 15 men). Overall image quality was evaluated to be superior in TSEDL versus TSES (p<0.001). Noise and edge sharpness were evaluated to be significantly superior in TSEDL versus TSES (noise: p<0.001, edge sharpness: p<0.05). No difference was found concerning qualitative diagnostic confidence, assessability of anatomical structures (p>0.05), and quantitative diagnostic performance for shoulder lesions when comparing the two sequences. Conclusions: A fast 5-minute TSEDL MRI protocol of the shoulder is feasible in routine clinical practice at 1.5 and 3 T, with interchangeable results concerning the diagnostic performance, allowing a reduction in scan time of more than 50% compared to the standard TSES protocol.

9.
Acta Radiol ; 65(5): 499-505, 2024 May.
Article in English | MEDLINE | ID: mdl-38343091

ABSTRACT

BACKGROUND: The deep learning (DL)-based reconstruction algorithm reduces noise in magnetic resonance imaging (MRI), thereby enabling faster MRI acquisition. PURPOSE: To compare the image quality and diagnostic performance of conventional turbo spin-echo (TSE) T2-weighted (T2W) imaging with DL-accelerated sagittal T2W imaging in the female pelvic cavity. METHODS: This study evaluated 149 consecutive female pelvic MRI examinations, including conventional T2W imaging with TSE (acquisition time = 2:59) and DL-accelerated T2W imaging with breath hold (DL-BH) (1:05 [0:14 × 3 breath-holds]) in the sagittal plane. In 294 randomly ordered sagittal T2W images, two radiologists independently assessed image quality (sharpness, subjective noise, artifacts, and overall image quality), made a diagnosis for uterine leiomyomas, and scored diagnostic confidence. For the uterus and piriformis muscle, quantitative imaging analysis was also performed. Wilcoxon signed rank tests were used to compare the two sets of T2W images. RESULTS: In the qualitative analysis, DL-BH showed similar or significantly higher scores for all features than conventional T2W imaging (P <0.05). In the quantitative analysis, the noise in the uterus was lower in DL-BH, but the noise in the muscle was lower in conventional T2W imaging. In the uterus and muscle, the signal-to-noise ratio was significantly lower in DL-BH than in conventional T2W imaging (P <0.001). The diagnostic performance of the two sets of T2W images was not different for uterine leiomyoma. CONCLUSIONS: DL-accelerated sagittal T2W imaging obtained with three breath-holds demonstrated superior or comparable image quality to conventional T2W imaging with no significant difference in diagnostic performance for uterine leiomyomas.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Pelvis , Humans , Female , Magnetic Resonance Imaging/methods , Adult , Middle Aged , Pelvis/diagnostic imaging , Aged , Leiomyoma/diagnostic imaging , Uterine Neoplasms/diagnostic imaging , Retrospective Studies , Young Adult , Image Interpretation, Computer-Assisted/methods , Uterus/diagnostic imaging
10.
Radiology ; 310(1): e231405, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38193842

ABSTRACT

Background Deep learning (DL)-based MRI reconstructions can reduce imaging times for turbo spin-echo (TSE) examinations. However, studies that prospectively use DL-based reconstructions of rapidly acquired, undersampled MRI in the shoulder are lacking. Purpose To compare the acquisition time, image quality, and diagnostic confidence of DL-reconstructed TSE (TSEDL) with standard TSE in patients indicated for shoulder MRI. Materials and Methods This prospective single-center study included consecutive adult patients with various shoulder abnormalities who were clinically referred for shoulder MRI between February and March 2023. Each participant underwent standard TSE MRI (proton density- and T1-weighted imaging; conventional TSE sequence was used as reference for comparison), followed by a prospectively undersampled accelerated TSEDL examination. Six musculoskeletal radiologists evaluated images using a four-point Likert scale (1, poor; 4, excellent) for overall image quality, perceived signal-to-noise ratio, sharpness, artifacts, and diagnostic confidence. The frequency of major pathologic features and acquisition times were also compared between the acquisition protocols. The intergroup comparisons were performed using the Wilcoxon signed rank test. Results Overall, 135 shoulders in 133 participants were evaluated (mean age, 47.9 years ± 17.1 [SD]; 73 female participants). The median acquisition time of the TSEDL protocol was lower than that of the standard TSE protocol (288 seconds [IQR, 288-288 seconds] vs 926 seconds [IQR, 926-950 seconds], respectively; P < .001), achieving a 69% lower acquisition time. TSEDL images were given higher scores for overall image quality, perceived signal-to-noise ratio, and artifacts (all P < .001). Similar frequency of pathologic features (P = .48 to > .99), sharpness (P = .06), or diagnostic confidence (P = .05) were noted between images from the two protocols. Conclusion In a clinical setting, TSEDL led to reduced examination time and higher image quality with similar diagnostic confidence compared with standard TSE MRI in the shoulder. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Chang and Chow in this issue.


Subject(s)
Deep Learning , Shoulder , Adult , Humans , Female , Middle Aged , Shoulder/diagnostic imaging , Magnetic Resonance Imaging , Artifacts , Physical Examination
11.
Neuroradiol J ; 37(3): 323-331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38195418

ABSTRACT

BACKGROUND AND PURPOSE: Deep learning (DL) accelerated MR techniques have emerged as a promising approach to accelerate routine MR exams. While prior studies explored DL acceleration for specific lumbar MRI sequences, a gap remains in comprehending the impact of a fully DL-based MRI protocol on scan time and diagnostic quality for routine lumbar spine MRI. To address this, we assessed the image quality and diagnostic performance of a DL-accelerated lumbar spine MRI protocol in comparison to a conventional protocol. METHODS: We prospectively evaluated 36 consecutive outpatients undergoing non-contrast enhanced lumbar spine MRIs. Both protocols included sagittal T1, T2, STIR, and axial T2-weighted images. Two blinded neuroradiologists independently reviewed images for foraminal stenosis, spinal canal stenosis, nerve root compression, and facet arthropathy. Grading comparison employed the Wilcoxon signed rank test. For the head-to-head comparison, a 5-point Likert scale to assess image quality, considering artifacts, signal-to-noise ratio (SNR), anatomical structure visualization, and overall diagnostic quality. We applied a 15% noninferiority margin to determine whether the DL-accelerated protocol was noninferior. RESULTS: No significant differences existed between protocols when evaluating foraminal and spinal canal stenosis, nerve compression, or facet arthropathy (all p > .05). The DL-spine protocol was noninferior for overall diagnostic quality and visualization of the cord, CSF, intervertebral disc, and nerve roots. However, it exhibited reduced SNR and increased artifact perception. Interobserver reproducibility ranged from moderate to substantial (κ = 0.50-0.76). CONCLUSION: Our study indicates that DL reconstruction in spine imaging effectively reduces acquisition times while maintaining comparable diagnostic quality to conventional MRI.


Subject(s)
Deep Learning , Lumbar Vertebrae , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Lumbar Vertebrae/diagnostic imaging , Female , Prospective Studies , Middle Aged , Aged , Signal-To-Noise Ratio , Spinal Stenosis/diagnostic imaging , Adult , Spinal Diseases/diagnostic imaging
12.
Magn Reson Med Sci ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38143088

ABSTRACT

PURPOSE: The objective of this study was to evaluate renal function and pathologic injury in chronic kidney disease (CKD) using T1 mapping. METHODS: We recruited fifteen healthy volunteers (HV) and seventy-five CKD patients to undergo T1 mapping examination, and renal parenchymal T1 values were measured. Spearman correlation analysis was used to evaluate the relevance between the pathologic injury score, estimated glomerular filtration rate (eGFR), and renal parenchymal T1 values. The diagnostic efficiency of T1 value in evaluating renal pathologic impairment was assessed. RESULTS: In all subjects, renal cortical T1 value was remarkably lower than renal medullary T1 value (P < 0.01). The renal medullary T1 value of HV was considerably lower than that of CKD patients in all stages (P < 0.05). The T1 values were negatively correlated with eGFR (cortex, r = -0.718; medulla, r = -0.645). The T1 values were positively correlated with glomerular injury score (cortex, r = 0.692; medulla, r = 0.632), tubulointerstitial injury score (cortex, r = 0.758; medulla, r = 0.690) (all P < 0.01). The area under the curve (AUC) of renal cortical and medullary T1 values were 0.914 and 0.880 to distinguish moderate-severe from mild renal injury groups. To differentiate mild renal injury group from control group, the AUC values of renal cortical and medullary T1 values were 0.879 and 0.856. CONCLUSION: T1 mapping has potential application value in non-invasively assessing renal pathologic injury in CKD.

13.
Sci Rep ; 13(1): 22629, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114575

ABSTRACT

Thermal noise caused by the imaged object is an intrinsic limitation in magnetic resonance imaging (MRI), resulting in an impaired clinical value of the acquisitions. Recently, deep learning (DL)-based denoising methods achieved promising results by extracting complex feature representations from large data sets. Most approaches are trained in a supervised manner by directly mapping noisy to noise-free ground-truth data and, therefore, require extensive paired data sets, which can be expensive or infeasible to obtain for medical imaging applications. In this work, a DL-based denoising approach is investigated which operates on complex-valued reconstructed magnetic resonance (MR) images without noise-free target data. An extension of Stein's unbiased risk estimator (SURE) and spatially resolved noise maps quantifying the noise level with pixel accuracy were employed during the training process. Competitive denoising performance was achieved compared to supervised training with mean squared error (MSE) despite optimizing the model without noise-free target images. The proposed DL-based method can be applied for MR image enhancement without requiring noise-free target data for training. Integrating the noise maps as an additional input channel further enables the regulation of the desired level of denoising to adjust to the preference of the radiologist.

14.
Diagnostics (Basel) ; 13(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37892062

ABSTRACT

OBJECTIVES: Hip MRI using standard multiplanar sequences requires long scan times. Accelerating MRI is accompanied by reduced image quality. This study aimed to compare standard two-dimensional (2D) turbo spin echo (TSE) sequences with accelerated 2D TSE sequences with deep learning (DL) reconstruction (TSEDL) for routine clinical hip MRI at 1.5 and 3 T in terms of feasibility, image quality, and diagnostic performance. MATERIAL AND METHODS: In this prospective, monocentric study, TSEDL was implemented clinically and evaluated in 14 prospectively enrolled patients undergoing a clinically indicated hip MRI at 1.5 and 3T between October 2020 and May 2021. Each patient underwent two examinations: For the first exam, we used standard sequences with generalized autocalibrating partial parallel acquisition reconstruction (TSES). For the second exam, we implemented prospectively undersampled TSE sequences with DL reconstruction (TSEDL). Two radiologists assessed the TSEDL and TSES regarding image quality, artifacts, noise, edge sharpness, diagnostic confidence, and delineation of anatomical structures using an ordinal five-point Likert scale (1 = non-diagnostic; 2 = poor; 3 = moderate; 4 = good; 5 = excellent). Both sequences were compared regarding the detection of common pathologies of the hip. Comparative analyses were conducted to assess the differences between TSEDL and TSES. RESULTS: Compared with TSES, TSEDL was rated to be significantly superior in terms of image quality (p ≤ 0.020) with significantly reduced noise (p ≤ 0.001) and significantly improved edge sharpness (p = 0.003). No difference was found between TSES and TSEDL concerning the extent of artifacts, diagnostic confidence, or the delineation of anatomical structures (p > 0.05). Example acquisition time reductions for the TSE sequences of 52% at 3 Tesla and 70% at 1.5 Tesla were achieved. CONCLUSION: TSEDL of the hip is clinically feasible, showing excellent image quality and equivalent diagnostic performance compared with TSES, reducing the acquisition time significantly.

15.
Diagnostics (Basel) ; 13(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685285

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate a deep learning (DL) reconstruction for turbo spin echo (TSE) sequences of the elbow regarding image quality and visualization of anatomy. MATERIALS AND METHODS: Between October 2020 and June 2021, seventeen participants (eight patients, nine healthy subjects; mean age: 43 ± 16 (20-70) years, eight men) were prospectively included in this study. Each patient underwent two examinations: standard MRI, including TSE sequences reconstructed with a generalized autocalibrating partial parallel acquisition reconstruction (TSESTD), and prospectively undersampled TSE sequences reconstructed with a DL reconstruction (TSEDL). Two radiologists evaluated the images concerning image quality, noise, edge sharpness, artifacts, diagnostic confidence, and delineation of anatomical structures using a 5-point Likert scale, and rated the images concerning the detection of common pathologies. RESULTS: Image quality was significantly improved in TSEDL (mean 4.35, IQR 4-5) compared to TSESTD (mean 3.76, IQR 3-4, p = 0.008). Moreover, TSEDL showed decreased noise (mean 4.29, IQR 3.5-5) compared to TSESTD (mean 3.35, IQR 3-4, p = 0.004). Ratings for delineation of anatomical structures, artifacts, edge sharpness, and diagnostic confidence did not differ significantly between TSEDL and TSESTD (p > 0.05). Inter-reader agreement was substantial to almost perfect (κ = 0.628-0.904). No difference was found concerning the detection of pathologies between the readers and between TSEDL and TSESTD. Using DL, the acquisition time could be reduced by more than 35% compared to TSESTD. CONCLUSION: TSEDL provided improved image quality and decreased noise while receiving equal ratings for edge sharpness, artifacts, delineation of anatomical structures, diagnostic confidence, and detection of pathologies compared to TSESTD. Providing more than a 35% reduction of acquisition time, TSEDL may be clinically relevant for elbow imaging due to increased patient comfort and higher patient throughput.

16.
Diagnostics (Basel) ; 13(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37761381

ABSTRACT

In the context of liver surgery, predicting postoperative liver dysfunction is essential. This study explored the potential of preoperative liver function assessment by MRI for predicting postoperative liver dysfunction and compared these results with the established indocyanine green (ICG) clearance test. This prospective study included patients undergoing liver resection with preoperative MRI planning. Liver function was quantified using T1 relaxometry and correlated with established liver function scores. The analysis revealed an improved model for predicting postoperative liver dysfunction, exhibiting an accuracy (ACC) of 0.79, surpassing the 0.70 of the preoperative ICG test, alongside a higher area under the curve (0.75). Notably, the proposed model also successfully predicted all cases of liver failure and showed potential in predicting liver synthesis dysfunction (ACC 0.78). This model showed promise in patient survival rates with a Hazard ratio of 0.87, underscoring its potential as a valuable tool for preoperative evaluation. The findings imply that MRI-based assessment of liver function can provide significant benefits in the early identification and management of patients at risk for postoperative liver dysfunction.

17.
Diagn Interv Imaging ; 104(12): 605-614, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37543490

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the temporal trends of ultrafast dynamic contrast-enhanced (DCE)-MRI during neoadjuvant chemotherapy (NAC) and to investigate whether the changes in DCE-MRI parameters could early predict pathologic complete response (pCR) of breast cancer. MATERIALS AND METHODS: This longitudinal study prospectively recruited consecutive participants with breast cancer who underwent ultrafast DCE-MRI examinations before treatment and after two, four, and six NAC cycles between February 2021 and February 2022. Five ultrafast DCE-MRI parameters (maximum slope [MS], time-to-peak [TTP], time-to-enhancement [TTE], peak enhancement intensity [PEI], and initial area under the curve in 60 s [iAUC]) and tumor size were measured at each timepoint. The changes in parameters between each pair of adjacent timepoints were additionally measured and compared between the pCR and non-pCR groups. Longitudinal data were analyzed using generalized estimating equations. The performance for predicting pCR was assessed using area under the receiver operating characteristic curve (AUC). RESULTS: Sixty-seven women (mean age, 50 ± 8 [standard deviation] years; age range: 25-69 years) were included, 19 of whom achieved pCR. MS, PEI, iAUC, and tumor size decreased, while TTP increased during NAC (all P < 0.001). The AUC (0.92; 95% confidence interval [CI]: 0.83-0.97) of the model incorporating ultrafast DCE-MRI parameter change values (from timepoints 1 to 2) and clinicopathologic characteristics was greater than that of the clinical model (AUC, 0.79; 95% CI: 0.68-0.88) and ultrafast DCE-MRI parameter model at timepoint 2 when combined with clinicopathologic characteristics (AUC, 0.82; 95% CI: 0.71-0.90) (P = 0.01 and 0.02). CONCLUSION: Early changes in ultrafast DCE-MRI parameters after NAC combined with clinicopathologic characteristics could serve as predictive markers of pCR of breast cancer.


Subject(s)
Breast Neoplasms , Female , Humans , Adult , Middle Aged , Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy , Longitudinal Studies , Treatment Outcome , Contrast Media , Magnetic Resonance Imaging , Retrospective Studies
18.
Diagnostics (Basel) ; 13(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37510071

ABSTRACT

Diffusion-weighted images of the prostate can suffer from a "hazy" background in low signal-intensity areas. We hypothesize that enhanced image processing (EIP) using complex averaging reduces artifacts, noise, and distortion in conventionally acquired diffusion-weighted images and synthesized high b-value images, thus leading to higher image quality and better detection of potentially malignant lesions. Conventional DWI trace images with a b-value of 1000 s/mm2 (b1000), calculated images with a b-value of 2000 s/mm2 (cb2000), and ADC maps of 3T multiparametric prostate MRIs in 53 patients (age 68.8 ± 10 years) were retrospectively evaluated. Standard images were compared to images using EIP. In the standard images, 36 lesions were detected in the peripheral zone and 20 in the transition zone. In 13 patients, EIP led to the detection of 8 additional lesions and the upgrading of 6 lesions; 6 of these patients were diagnosed with prostate carcinoma Gleason 7 or 8. EIP improved qualitative ratings for overall image quality and lesion detectability. Artifacts were significantly reduced in the cb2000 images. Quantitative measurements for lesion detectability expressed as an SI ratio were significantly improved. EIP using complex averaging led to image quality improvements in acquired and synthesized DWI, potentially resulting in elevated diagnostic accuracy and management changes.

19.
Eur Radiol ; 33(11): 7697-7706, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37314472

ABSTRACT

OBJECTIVES: To determine the clinical feasibility of T2-weighted turbo spin-echo (T2-TSE) imaging with deep learning reconstruction (DLR) in female pelvic MRI compared with conventional T2 TSE in terms of image quality and scan time. METHODS: Between May 2021 and September 2021, 52 women (mean age, 44 years ± 12) who underwent 3-T pelvic MRI with additional T2-TSE using a DLR algorithm were included in this single-center prospective study with patient's informed consents. Conventional, DLR, and DLR T2-TSE images with reduced scan times were independently assessed and compared by four radiologists. The overall image quality, differentiation of anatomic details, lesion conspicuity, and artifacts were evaluated using a 5-point scale. Inter-observer agreement of the qualitative scores was compared and reader protocol preferences were then evaluated. RESULTS: In the qualitative analysis of all readers, fast DLR T2-TSE showed significantly better overall image quality, differentiation of anatomic regions, lesion conspicuity, and lesser artifacts than conventional T2-TSE and DLR T2-TSE, despite approximately 50% reduction in scan time (all p < 0.05). The inter-reader agreement for the qualitative analysis was moderate to good. All readers preferred DLR over conventional T2-TSE regardless of scan time and preferred fast DLR T2-TSE (57.7-78.8%), except for one who preferred DLR over fast DLR T2-TSE (53.8% vs. 46.1%). CONCLUSION: In female pelvic MRI, image quality and accelerated image acquisition for T2-TSE can be significantly improved by using DLR compared to conventional T2-TSE. Fast DLR T2-TSE was non-inferior to DLR T2-TSE in terms of reader preference and image quality. CLINICAL RELEVANCE STATEMENT: DLR of T2-TSE in female pelvic MRI enables fast imaging along with maintaining optimal image quality compared with parallel imaging-based conventional T2-TSE. KEY POINTS: • Conventional T2 turbo spin-echo based on parallel imaging has limitations for accelerated image acquisition while maintaining good image quality. • Deep learning image reconstruction showed better image quality in both images obtained using the same or accelerated image acquisition parameters compared with conventional T2 turbo spin-echo in female pelvic MRI. • Deep learning image reconstruction enables accelerated image acquisition while maintaining good image quality in the T2-TSE of female pelvic MRI.


Subject(s)
Deep Learning , Humans , Female , Adult , Prospective Studies , Magnetic Resonance Imaging/methods , Radiography , Algorithms , Artifacts
20.
PLoS One ; 18(6): e0287903, 2023.
Article in English | MEDLINE | ID: mdl-37379272

ABSTRACT

OBJECTIVE: To evaluate the feasibility and clinical usefulness of deep learning (DL)-accelerated turbo spin echo (TSEDL) sequences relative to standard TSE sequences (TSES) for acute radius fracture patients wearing a splint. METHODS: This prospective consecutive study investigated 50 patients' preoperative wrist MRI scans acquired between July 2021 and January 2022. Examinations were performed at 3 Tesla MRI with body array coils due to the wrist splint. Besides TSES obtained according to the routine protocol, TSEDL sequences for axial T2-, coronal T1-, and coronal PD-weighted TSE sequences were scanned for comparison. For quantitative assessment, the relative signal-to-noise ratio (rSNR), the relative contrast-to-noise ratio (rCNR), and the relative contrast ratio (rCR) were measured. For qualitative assessment, all images were assessed by two independent musculoskeletal radiologists in terms of perceived SNR, image contrast, image sharpness, artifacts disturbing evaluation, overall image quality and diagnostic confidence for injuries using a four- or five-point Likert scale. RESULTS: The scan time was shortened approximately by a factor of two for TSEDL compared to TSES. TSEDL images showed significantly better rSNR, rCNR, and rCR values for all sequences, and scored significantly better in terms of both image quality and diagnostic confidence for both readers than TSES images (all p < .05). Interrater reliabilities were in almost perfect agreement. CONCLUSION: The DL-accelerated technique proved to be very helpful not only to reduce scan time but also to improve image quality for acute painful fracture patients wearing a splint despite using body array coils instead of a wrist-specific coil. Based on our study, the DL-accelerated technique can be very useful for MRI of any part of the extremities in trauma settings just with body array coils.


Subject(s)
Deep Learning , Radius Fractures , Humans , Prospective Studies , Feasibility Studies , Splints , Magnetic Resonance Imaging/methods , Artifacts
SELECTION OF CITATIONS
SEARCH DETAIL
...