Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Article in English | MEDLINE | ID: mdl-38889969

ABSTRACT

BACKGROUND AND PURPOSE: Intra-cranial vessel wall imaging (IC-VWI) is technically challenging to implement, given the simultaneous requirements of high spatial resolution, excellent blood and CSF signal suppression and clinically acceptable gradient times. Herein, we present our preliminary findings on the evaluation of a deep learning optimized sequence using T1 weighted imaging. MATERIALS AND METHODS: Clinical and optimized Deep learning-based image reconstruction (DLBIR) T1 SPACE sequences were evaluated, comparing non-contrast sequences in ten healthy controls and post-contrast sequences in five consecutive patients. Images were reviewed on a Likert-like scale by four fellowship-trained neuroradiologists. Scores (range 1-4) were separately assigned for eleven vessel segments in terms of vessel wall and lumen delineation. Additionally, images were evaluated in terms of overall background noise, image sharpness and homogenous CSF signal. Segment-wise scores were compared using paired samples t-tests. RESULTS: The scan time for the clinical and DLBIR sequences were 7:26 minutes and 5:23 minutes respectively. DLBIR images showed consistently higher wall signal and lumen visualization scores, with the differences being statistically significant in the majority of vessel segments on both pre and post contrast images. DLBIR images had lower background noise, higher image sharpness and uniform CSF signal. Depiction of intracranial pathologies was better or similar on the DLBIR images. CONCLUSIONS: Our preliminary findings suggest that DLBIR optimized IC-VWI sequences may be helpful in achieving shorter gradient times with improved vessel wall visualization and overall image quality. These improvements may help with wider adoption of ICVWI in clinical practice and should be further validated on a larger cohort. ABBREVIATIONS: DL deep learning; VWI = vessel wall imaging.

2.
Magn Reson Med Sci ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763758

ABSTRACT

PURPOSE: To evaluate how the relationship between respiratory interval (RI) and temporal resolution (TR) impacts image quality in free-breathing abdominal MRI (FB-aMRI) using golden-angle radial sparse parallel (GRASP). METHODS: Ten healthy volunteers (25.9 ± 2.5 years, four women) underwent 2 mins free-breathing fat-suppression T1-weighted imaging using GRASP at RIs of 3 and 5s (RI3 and RI5, respectively) and retrospectively reconstructed at TR of 1.8, 2.9, 4.8, and 7.7s (TR1.8, TR2.9, TR4.8, and TR7.7, respectively) in each patient. The standard deviation (SD) under the diaphragm was measured using SD maps showing the discrepancy for each horizontal section at all TRs. Two radiologists evaluated image quality (visualization of the right hepatic vein at the confluence of the inferior vena cava, posterior segment branch of portal vein, pancreas, left kidney, and artifacts) at all TRs using a 5-point scale. RESULTS: The SD was significantly higher at TR1.8 compared to TR4.8 (P < 0.01) and TR7.7 (P < 0.001), as well as at TR2.9 compared to TR7.7 (P < 0.01) for both RIs. The SD between TR4.8 and TR7.7 did not differ for both RIs. For all visual assessment metrics, the TR1.8 scores were significantly lower than the TR4.8 and TR7.7 scores for both RIs. The pancreas and left kidney scores at TR2.9 were significantly lower than those at TR7.7 (P < 0.05) for RI5. Additionally, the left kidney score at TR1.8 was lower than that at TR2.9 (P < 0.05) for RI3. All scores at TR2.9, TR4.8, and TR7.7 were similar for RI3, while those at TR4.8 and TR7.7 were similar for RI5. CONCLUSION: Prolonging the TRs compared to RIs enhances image quality in FB-aMRI using GRASP.

3.
Magn Reson Med ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650444

ABSTRACT

PURPOSE: To improve image quality, mitigate quantification biases and variations for free-breathing liver proton density fat fraction (PDFF) and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ quantification accelerated by radial k-space undersampling. METHODS: A free-breathing multi-echo stack-of-radial MRI method was developed with compressed sensing with multidimensional regularization. It was validated in motion phantoms with reference acquisitions without motion and in 11 subjects (6 patients with nonalcoholic fatty liver disease) with reference breath-hold Cartesian acquisitions. Images, PDFF, and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps were reconstructed using different radial view k-space sampling factors and reconstruction settings. Results were compared with reference-standard results using Bland-Altman analysis. Using linear mixed-effects model fitting (p < 0.05 considered significant), mean and SD were evaluated for biases and variations of PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ , respectively, and coefficient of variation on the first echo image was evaluated as a surrogate for image quality. RESULTS: Using the empirically determined optimal sampling factor of 0.25 in the accelerated in vivo protocols, mean differences and limits of agreement for the proposed method were [-0.5; -33.6, 32.7] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-1.0%; -5.8%, 3.8%] for PDFF, close to those of a previous self-gating method using fully sampled radial views: [-0.1; -27.1, 27.0] s-1 for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and [-0.4%; -4.5%, 3.7%] for PDFF. The proposed method had significantly lower coefficient of variation than other methods (p < 0.001). Effective acquisition time of 64 s or 59 s was achieved, compared with 171 s or 153 s for two baseline protocols with different radial views corresponding to sampling factor of 1.0. CONCLUSION: This proposed method may allow accelerated free-breathing liver PDFF and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ mapping with reduced biases and variations.

4.
Magn Reson Med Sci ; 22(4): 477-485, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-36002311

ABSTRACT

PURPOSE: The optimal temporal resolution for free-breathing dynamic contrast-enhanced MRI (FBDCE-MRI) of the pancreas has not been determined. This study aimed to evaluate the appropriate temporal resolution to achieve good image quality and to perform pharmacokinetic analysis in FBDCE-MRI of the pancreas using golden-angle radial sparse parallel (GRASP). METHODS: Sixteen participants (53 ± 15 years, eight females) undergoing FBDCE-MRI were included in this prospective study. Images were retrospectively reconstructed at four temporal resolutions (1.8, 3.0, 4.8, and 7.8s). Two radiologists (5 years of experience) evaluated the image quality of each reconstructed image by assessing the visualization of the celiac artery (CEA), the common hepatic artery, the splenic artery, each area of the pancreas, and artifacts using a 5-point scale. Using Tissue-4D, pharmacokinetic parameters were calculated for each area in the reconstructed images at each temporal resolution for 16 examinations, excluding two with errors in the pharmacokinetic modeling analysis. Friedman and Bonferroni tests were used for analysis. A P value < 0.05 was considered statistically significant. RESULTS: During vascular assessment, only scores for the CEA at 7.8s were significantly lower than the other temporal resolutions. Scores of all pancreatic regions and artifacts were significantly lower at 1.8s than at 4.8s and 7.8s. In the pharmacokinetic analysis, all volume transfer coefficients (Ktrans), rate constants (Kep), and the initial area under the concentration curve (iAUC) in the pancreatic head and tail were significantly lower at 4.8s and 7.8s than at 1.8s. iAUC in the pancreatic body and extracellular extravascular volume fraction (Ve) in the pancreatic head were significantly lower at 7.8s than at 1.8s. CONCLUSION: A temporal resolution of 3.0s is appropriate to achieve image quality and perform pharmacokinetic analysis in FBDCE-MRI of the pancreas using GRASP.


Subject(s)
Contrast Media , Image Enhancement , Female , Humans , Image Enhancement/methods , Contrast Media/pharmacokinetics , Retrospective Studies , Prospective Studies , Magnetic Resonance Imaging/methods , Pancreas/diagnostic imaging
5.
Magn Reson Med ; 87(1): 281-291, 2022 01.
Article in English | MEDLINE | ID: mdl-34412158

ABSTRACT

PURPOSE: To develop an accelerated k-space shift calibration method for free-breathing 3D stack-of-radial MRI quantification of liver proton-density fat fraction (PDFF) and R2∗ . METHODS: Accelerated k-space shift calibration was developed to partially skip acquisition of k-space shift data in the through-plane direction then interpolate in processing, as well as to reduce the in-plane averages. A multi-echo stack-of-radial sequence with the baseline calibration was evaluated on a phantom versus vendor-provided reference-standard PDFF and R2∗ values at 1.5T, and in 13 healthy subjects and 5 clinical subjects at 3T with respect to reference-standard breath-hold Cartesian acquisitions. PDFF and R2∗ maps were calculated with different calibration acceleration factors offline and compared to reference-standard values using Bland-Altman analysis. Bias and uncertainty were evaluated using normal distribution and Bayesian probability of difference (P < .05 considered significant). RESULTS: Bland-Altman plots of phantom and in vivo data showed that substantial acceleration was highly feasible in both through-plane and in-plane directions. Compared to the baseline calibration without acceleration, Bayesian analysis revealed no significant differences on biases and uncertainties of PDFF and R2∗ measurements with all acceleration methods in this study, except the method with through-plane acceleration equaling slices and averages equaling 20 for PDFF and R2∗ (both P < .001) for the phantom. A six-fold reduction in equivalent calibration acquisition time (time saving ≥25 s and ≥80.7%) was achieved using recommended acceleration factors for the in vivo protocols in this study. CONCLUSION: This proposed method may allow accelerated calibration for free-breathing stack-of-radial MRI PDFF and R2∗ mapping.


Subject(s)
Liver , Magnetic Resonance Imaging , Adipose Tissue/diagnostic imaging , Bayes Theorem , Calibration , Humans , Liver/diagnostic imaging , Reproducibility of Results
6.
Invest Radiol ; 56(7): 433-441, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33813577

ABSTRACT

OBJECTIVES: The aim of this study was to intraindividually compare the performance of 2 compressed sensing (CS)-accelerated magnetic resonance imaging (MRI) sequences, 1 featuring Cartesian (compressed sensing volumetric interpolated breath-hold examination [CS-VIBE]) and the other radial (golden-angle radial sparse parallel [GRASP]) k-space sampling in continuous dynamic imaging during hepatic vascular phases, using extracellular and hepatocyte-specific contrast agents. MATERIALS AND METHODS: Seven New Zealand white rabbits, with induced VX2 liver tumors (median number of lesions, 2 ± 0.83; range, 1-3), received 2 continuously acquired T1-weighted prototype CS-accelerated MRI sequences (CS-VIBE and GRASP) with high spatial (0.8 × 0.8 × 1.5 mm) and temporal resolution (3.5 seconds) in randomized order on 2 separate days using a 1.5-T scanner. In all animals, imaging was performed using first gadobutrol at a dose of 0.1 mmol/kg and, then 45 minutes later, gadoxetic acid at a dose of 0.025 mmol/kg.The following qualitative parameters were assessed using 3- and 5-point Likert scales (3 and 5 being the highest scores respectively): image quality (IQ), arterial and venous vessel delineation, tumor enhancement, motion artifacts, and sequence-specific artifacts. Furthermore, the following quantitative parameters were obtained: relative peak signal enhancement, time to peak, mean transit time, and plasma flow ratios. Paired sampled t tests and Wilcoxon signed rank tests were used for intraindividual comparison. Image analysis was performed by 2 radiologists. RESULTS: Six of 7 animals underwent the full imaging protocol and obtained data were analyzed statistically. Overall IQ was rated moderate to excellent, not differing significantly between the 2 sequences.Gadobutrol-enhanced CS-VIBE examinations revealed the highest mean Likert scale values in terms of vessel delineation and tumor enhancement (arterial 4.4 [4-5], venous 4.3 [3-5], and tumor 2.9 [2-3]). Significantly, more sequence-specific artifacts were seen in GRASP examinations (P = 0.008-0.031). However, these artifacts did not impair IQ. Excellent Likert scale ratings were found for motion artifacts in both sequences. In both sequences, a maximum of 4 hepatic arterial dominant phases were obtained. Regarding the relative peak signal enhancement, CS-VIBE and GRASP showed similar results. The relative peak signal enhancement values did not differ significantly between the 2 sequences in the aorta, the hepatic artery, or the inferior vena cava (P = 0.063-0.536). However, significantly higher values were noted for CS-VIBE in gadoxetic acid-enhanced examinations in the portal vein (P = 0.031) and regarding the tumor enhancement (P = 0.005). Time to peak and mean transit time or plasma flow ratios did not differ significantly between the sequences. CONCLUSIONS: Both CS-VIBE and GRASP provide excellent results in dynamic liver MRI using extracellular and hepatocyte-specific contrast agents, in terms of IQ, peak signal intensity, and presence of artifacts.


Subject(s)
Liver Neoplasms , Neoplasms, Experimental , Animals , Artifacts , Breath Holding , Contrast Media , Image Enhancement , Imaging, Three-Dimensional , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Rabbits
7.
Eur J Radiol ; 136: 109515, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33429209

ABSTRACT

PURPOSE: To compare the quality of images obtained by T1-weighted hepatobiliary MR cholangiography using Gd-EOB-DTPA with 1-mm isovoxel acquisition and compressed sensing (T1-MRCCS) or parallel imaging (T1-MRCPI) for assessment of biliary tree anatomy. METHOD: We prospectively reviewed T1-MRCCS, T1-MRCPI, and respiratory-triggered 3D T2-weighted MR cholangiography (T2-MRC) images in 58 patients. Two radiologists independently assessed the three sets of images and scored the biliary tree visualization and overall image quality in all cases using a 5-point Likert scale. The resulting scores were compared among T1-MRCCS, T1-MRCPI, and T2-MRC images using a Friedman test followed by a Scheffe test. The inter-reader agreement in scoring was assessed using κ statistics. RESULTS: The image quality scores for the gallbladder on both T1-MRCCS and T1-MRCPI were significantly lower than those on T2-MRC (p < 0.01) for both readers. Meanwhile, the image quality scores for the right and left hepatic ducts and the anterior and posterior branches of the right hepatic duct on both T1-MRCCS and T1-MRCPI were significantly higher than those on T2-MRC (p < 0.05) for both readers. For Reader 2, the overall image quality scores on T1-MRCCS and T1-MRCPI were both significantly higher than those on T2-MRC (p < 0.05). There were no significant differences between the image quality scores on T1-MRCCS and T1-MRCPI for visualization of each bile duct (p < 0.05). CONCLUSIONS: There may be no significant difference in quality between T1-MRCCS images and T1-MRCPI images for assessment of biliary tree anatomy, and both types of images may be better than T2-MRC images, although clinical indication is limited compared with T2-MRC.


Subject(s)
Biliary Tract , Contrast Media , Biliary Tract/diagnostic imaging , Cholangiography , Cholangiopancreatography, Magnetic Resonance , Gadolinium DTPA , Humans , Magnetic Resonance Imaging , Retrospective Studies
8.
J Magn Reson Imaging ; 53(1): 118-129, 2021 01.
Article in English | MEDLINE | ID: mdl-32478915

ABSTRACT

BACKGROUND: Stack-of-radial multiecho gradient-echo MRI is promising for free-breathing liver R2* quantification and may benefit children. PURPOSE: To validate stack-of-radial MRI with self-gating motion compensation in phantoms, and to evaluate it in children. STUDY TYPE: Prospective. PHANTOMS: Four vials with different R2* driven by a motion stage. SUBJECTS: Sixteen pediatric patients with suspected nonalcoholic fatty liver disease or steatohepatitis (five females, 13 ± 4 years, body mass index 29.2 ± 8.6 kg/m2 ). FIELD STRENGTH/SEQUENCES: Stack-of-radial, and 2D and 3D Cartesian multiecho gradient-echo sequences at 3T. ASSESSMENT: Ungated and gated stack-of-radial proton density fat fraction (PDFF) and R2* maps were reconstructed without and with self-gating motion compensation. Stack-of-radial R2* measurements of phantoms without and with motion were validated against reference 2D Cartesian results of phantoms without motion. In subjects, free-breathing stack-of-radial and reference breath-hold 3D Cartesian were acquired. Subject inclusion for statistical analysis and region of interest placement were determined independently by two observers. STATISTICAL TESTS: Phantom results were fitted with a weighted linear model. Demographic differences between excluded and included subjects were tested by multivariate analysis of variance. PDFF and R2* measurements were compared using Bland-Altman analysis. Interobserver agreement was assessed by the intraclass correlation coefficient (ICC). RESULTS: Ungated stack-of-radial R2* inside moving phantom vials showed a significant positive bias of 64.3 s-1 (P < 0.00001), unlike gated results (P > 0.31). Subject inclusion decisions for statistical analysis from two observers were consistent. No significant differences were found between four excluded and 12 included subjects (P = 0.14). Compared to breath-hold Cartesian, ungated and gated free-breathing stack-of-radial exhibited mean R2* differences of 18.5 s-1 and 3.6 s-1 . Mean PDFF differences were 1.1% and 1.0% for ungated and gated measurements, respectively. Interobserver agreement was excellent (ICC for PDFF = 0.99, ICC for R2* = 0.90; P < 0.0003). DATA CONCLUSION: Stack-of-radial MRI with self-gating motion compensation seems to allow free-breathing liver R2* and PDFF quantification in children. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Magnetic Resonance Imaging , Protons , Child , Female , Humans , Liver/diagnostic imaging , Motion , Prospective Studies
9.
Eur J Radiol ; 122: 108765, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31830630

ABSTRACT

PURPOSE: To clarify the clinical usefulness of breath-hold compressed sensing three-dimensional magnetic resonance cholangiopancreatography (BH-MRCP) added to conventional respiratory-gating MRCP (RG-MRCP), we prospectively evaluated the image quality of BH-MRCP and compared it with that of RG-MRCP. We also evaluated to what extent the overall image quality was improved by adding BH-MRCP to RG-MRCP. MATERIALS AND METHODS: A total of 113 patients who underwent RG-MRCP and BH-MRCP at a 3-T MR unit were enrolled. We set a scan time of approximately 180 s for RG-MRCP and 20 s for BH-MRCP before examination, and measured actual scan time and assessed image quality using a 5-point scale (5, good; 1, poor). Image quality scores of 1, 2 and 3 were considered clinically inadequate. Image quality scores of RG-MRCP and BH-MRCP were compared. In addition, we compared "RG-MRCP alone" and "hybrid MRCP" (the best-scoring image was picked from RG-MRCP and BH-MRCP when the RG-MRCP score was clinically inadequate). RESULTS: The mean actual scan time of RG-MRCP/BH-MRCP was 191/20 s. The mean scores of RG-MRCP, BH-MRCP and hybrid MRCP were 3.67, 3.35 and 3.92, respectively. The score of hybrid MRCP was significantly better than that of RG-MRCP (P <  0.05). The image quality of RG-MRCP was clinically inadequate in 43/113 (38 %) cases and the inadequate image quality was improved to be clinically adequate in 13/43 (30 %) cases by adding BH-MRCP. CONCLUSION: BH-MRCP brings added value to RG-MRCP because an additional examination of BH-MRCP could compensate for the image deterioration of RG-MRCP caused by motion artifacts.


Subject(s)
Breath Holding , Cholangiopancreatography, Magnetic Resonance/methods , Pancreatic Diseases/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Artifacts , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Male , Middle Aged , Motion , Pressure , Young Adult
10.
Magn Reson Med ; 83(6): 1964-1978, 2020 06.
Article in English | MEDLINE | ID: mdl-31682016

ABSTRACT

PURPOSE: To develop an accurate free-breathing 3D liver R2∗ mapping approach and to evaluate it in vivo. METHODS: A free-breathing multi-echo stack-of-radial sequence was applied in 5 normal subjects and 6 patients at 3 Tesla. Respiratory motion compensation was implemented using the inherent self-gating signal. A breath-hold Cartesian acquisition was the reference standard. Proton density fat fraction and R2∗ were measured and compared between radial and Cartesian methods using Bland-Altman plots. The normal subject results were fitted to a linear mixed model (P < .05 considered significant). RESULTS: Free-breathing stack-of-radial without self-gating exhibited signal attenuation in echo images and artifactually elevated apparent R2∗ values. In the Bland-Altman plots of normal subjects, compared to breath-hold Cartesian, free-breathing stack-of-radial acquisitions of 22, 30, 36, and 44 slices, had mean R2∗ differences of 27.4, 19.4, 10.9, and 14.7 s-1 with 800 radial views, and they had 18.4, 11.9, 9.7, and 27.7 s-1 with 404 views, which were reduced to 0.4, 0.9, -0.2, and -0.7 s-1 and to -1.7, -1.9, -2.1, and 0.5 s-1 with self-gating, respectively. No substantial proton density fat fraction differences were found. The linear mixed model showed free-breathing radial R2∗ results without self-gating were significantly biased by 17.2 s-1 averagely (P = .002), which was eliminated with self-gating (P = .930). Proton density fat fraction results were not different (P > .234). For patients, Bland-Altman plots exhibited mean R2∗ differences of 14.4 and 0.1 s-1 for free-breathing stack-of-radial without self-gating and with self-gating, respectively, but no substantial proton density fat fraction differences. CONCLUSION: The proposed self-gating method corrects the respiratory motion bias and enables accurate free-breathing stack-of-radial quantification of liver R2∗ .


Subject(s)
Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Humans , Liver/diagnostic imaging , Magnetic Resonance Imaging , Motion
11.
J Magn Reson ; 305: 22-30, 2019 08.
Article in English | MEDLINE | ID: mdl-31158792

ABSTRACT

Noise in diffusion magnetic resonance imaging can introduce bias in apparent diffusion coefficient (ADC) quantification. Previous studies proposed methods that are site-specific techniques as research tools with limited availability and typically require manual intervention, not completely ready to use in the clinical environment. The purpose of this study was to develop a fully automatic computational method to correct noise bias in ADC quantification and perform a preliminary evaluation in the clinical prostate diffusion weighted imaging (DWI). Using a pseudo replica approach for the noise map calculation as well as a direct mapping and a stepwise Chebychev polynomial modelling approach for the ADC fitting, a fully automatic noise-bias-compensated ADC calculation method was proposed and implemented both on the scanner and offline. The proposed method was validated in a computer simulation and a standardized diffusion phantom with ground-truth values. Two in vivo studies were performed to evaluate the proposed method in the clinical environment. The first in vivo study performed acquisitions using a clinically routine prostate DWI protocol on 29 subjects to evaluate the consistency between simulated and empirical results. In the second in vivo study, prostate ADC values of 14 subjects were compared between data acquired with external coils only and reconstructed with the proposed method vs. acquired with external combined with endorectal coils and reconstructed with the conventional method. In statistical analyses, p < 0.05 was regarded as significantly different. In the computer simulation, the proposed method showed smaller error percentage than the other methods and was significantly different (p < 2.2 × 10-16). With low signal-to-noise ratio (SNR), the conventional method underestimated ADC values compared to the ground truth values of the diffusion phantom, while the results of the proposed method were more consistent with the ground truth values. Statistical analyses showed no significant differences between measured and simulated results in the first in vivo study (p = 0.5618). Data from the second in vivo study showed that agreement between ADC measured with external coils only and combined coils was improved for the proposed method (mean bias: 0.04 × 10-3 mm2/s, 95% confidence interval (CI) = [-0.01, 0.09] × 10-3 mm2/s, p = 0.187), compared to the conventional method (mean bias: -0.12 × 10-3 mm2/s, 95% CI = [-0.17, -0.06] × 10-3 mm2/s, p < 0.0001). The proposed method compensates noise bias in low-SNR diffusion-weighted acquisitions and results show improved ADC quantification accuracy in the prostate. This method may be suitable for both clinical imaging and research utilizing ADC quantification.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Prostatic Neoplasms/diagnostic imaging , Aged , Algorithms , Humans , Male , Monte Carlo Method , Phantoms, Imaging , Prospective Studies , Signal-To-Noise Ratio
12.
Eur J Radiol ; 114: 160-166, 2019 May.
Article in English | MEDLINE | ID: mdl-31005168

ABSTRACT

Changes in muscle-fat-composition affect physical performance and muscular function, like strength and power. The purpose of the present study was to investigate whether changes in soft tissue composition of the thigh and changes in muscle size and composition resulting from physical training were detectable with Dixon magnetic resonance imaging (MRI). A young and healthy subject population (n = 21, 29 ± 5 years) was split into a strength training (G_t, 11 subjects) and a control group (G_c, 10 subjects). The physical training intervention lasted over 13 weeks. Before and after this intervention a muscle performance exam and an MRI exam were conducted on all subjects. To evaluate muscle performance and the training effect, the jump height was measured using a mechanograph. Fascia, pure muscle and subcutaneous fat areas and proton density water fraction (PDWF) and proton density fat fraction (PDFF) of the left thigh were measured with a 6-point Dixon prototype MRI sequence. Muscle area changed by +7.1 ± 3.3% (p < 0.05) and +2.5 ± 5.6% (p > 0.05), and PDFF by -16.3 ± 10.4% (p < 0.05) and +5.4 ± 6.9% (p > 0.05) in G_t and G_c, respectively. Cross-sectional and longitudinal correlation coefficients R between PDFF and muscle performance were moderate (R = -0.43 and R = -0.51, respectively). The correlation was also moderate for muscle performance and a combined muscle fat per area ratio (R = -0.40 and R = -0.55, respectively). Dixon MRI is capable to measure training-related changes in muscle area and muscular fat. Both parameters correlate to muscle function. Muscle area per se does not always mirror functional parameters. Due to the complex interaction of muscle volume, muscle structure, and inter- and intramuscular coordination during muscle performance, multivariate muscle parameter models should be investigated in the future. Future studies will have to show if structural parameters mirror and explain functional muscle data both in the context of physical training and pathologies like sarcopenia.


Subject(s)
Adipose Tissue/anatomy & histology , Adipose Tissue/diagnostic imaging , Magnetic Resonance Imaging , Muscle Strength/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/diagnostic imaging , Physical Conditioning, Human/physiology , Adipose Tissue/physiology , Adult , Feasibility Studies , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Male , Muscle, Skeletal/physiology , Pilot Projects , Young Adult
13.
J Cachexia Sarcopenia Muscle ; 9(6): 1093-1100, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30221479

ABSTRACT

BACKGROUND: Changes in muscle fat composition as for example observed in sarcopenia or muscular dystrophy affect physical performance and muscular function, like strength and power. The purpose of the present study is to measure the repeatability of Dixon magnetic resonance imaging (MRI) for assessing muscle volume and fat in the thigh. Furthermore, repeatability of magnetic resonance spectroscopy (MRS) for assessing muscle fat is determined. METHODS: A prototype 6-point Dixon MRI method was used to measure muscle volume and muscle proton density fat fraction (PDFF) in the left thigh. PDFF was measured in musculus semitendinosus of the left thigh with a T2-corrected multi-echo MRS method. For the determination of short-term repeatability (consecutive examinations), the root mean square coefficients of variation of Dixon MRI and MRS data of 23 young and healthy (29 ± 5 years) and 24 elderly men with sarcopenia (78 ± 5 years) were calculated. For the estimation of the long-term repeatability (13 weeks between examinations), the root mean square coefficients of variation of MRI data of seven young and healthy (31 ± 7 years) and 23 elderly sarcopenic men (76 ± 5 years) were calculated. Long-term repeatability of MRS was not determined. RESULTS: Short-term errors of Dixon MRI volume measurement were between 1.2% and 1.5%, between 2.1% and 1.6% for Dixon MRI PDFF measurement, and between 9.0% and 15.3% for MRS. Because of the high short-term repeatability errors of MRS, long-term errors were not determined. Long-term errors of MRI volume measurement were between 1.9% and 4.0% and of Dixon MRI PDFF measurement between 2.1% and 4.2%. CONCLUSIONS: The high degree of repeatability of volume and PDFF Dixon MRI supports its use to predict future mobility impairment and measures the success of therapeutic interventions, for example, in sarcopenia in aging populations and muscular dystrophy. Because of possible inhomogeneity of fat infiltration in muscle tissue, the application of MRS for PDFF measurements in muscle is more problematic because this may result in high repeatability errors. In addition, the tissue composition within the MRS voxel may not be representative for the whole muscle.


Subject(s)
Adipose Tissue/diagnostic imaging , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Muscle, Skeletal/diagnostic imaging , Thigh/diagnostic imaging , Adipose Tissue/pathology , Adiposity , Adult , Aged , Aged, 80 and over , Body Composition , Case-Control Studies , Humans , Male , Muscle, Skeletal/pathology , Organ Size , Reproducibility of Results , Sarcopenia/diagnostic imaging , Sarcopenia/pathology , Young Adult
14.
Eur J Radiol ; 103: 57-64, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29803386

ABSTRACT

The purpose of this study is to evaluate and compare 2-point (2pt), 3-point (3pt), and 6-point (6pt) Dixon magnetic resonance imaging (MRI) sequences with flexible echo times (TE) to measure proton density fat fraction (PDFF) within muscles. Two subject groups were recruited (G1: 23 young and healthy men, 31 ±â€¯6 years; G2: 50 elderly men, sarcopenic, 77 ±â€¯5 years). A 3-T MRI system was used to perform Dixon imaging on the left thigh. PDFF was measured with six Dixon prototype sequences: 2pt, 3pt, and 6pt sequences once with optimal TEs (in- and opposed-phase echo times), lower resolution, and higher bandwidth (optTE sequences) and once with higher image resolution (highRes sequences) and shortest possible TE, respectively. Intra-fascia PDFF content was determined. To evaluate the comparability among the sequences, Bland-Altman analysis was performed. The highRes 6pt Dixon sequences served as reference as a high correlation of this sequence to magnetic resonance spectroscopy has been shown before. The PDFF difference between the highRes 6pt Dixon sequence and the optTE 6pt, both 3pt, and the optTE 2pt was low (between 2.2% and 4.4%), however, not to the highRes 2pt Dixon sequence (33%). For the optTE sequences, difference decreased with the number of echoes used. In conclusion, for Dixon sequences with more than two echoes, the fat fraction measurement was reliable with arbitrary echo times, while for 2pt Dixon sequences, it was reliable with dedicated in- and opposed-phase echo timing.


Subject(s)
Adipose Tissue/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult
15.
Eur Radiol ; 28(9): 3591-3600, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29532241

ABSTRACT

OBJECTIVES: To determine whether liver function as determined by intravenous administration of 13C-methacetin and continuous real-time breath analysis can be estimated quantitatively from gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance (MR) relaxometry. METHODS: Sixty-six patients underwent a 13C-methacetin breath test (13C-MBT) for evaluation of liver function and Gd-EOB-DTPA-enhanced T1-relaxometry at 3 T. A transverse 3D VIBE sequence with an inline T1 calculation based on variable flip angles was acquired prior to (T1 pre) and 20 min post-Gd-EOB-DTPA (T1 post) administration. The reduction rate of T1 relaxation time (rrT1) and T1 relaxation velocity index (∆R1) between pre- and post-contrast images was evaluated. 13C-MBT values were correlated with T1post, ∆R1 and rrT1, providing an MRI-based estimated 13C-MBT value. The interobserver reliability was assessed by determining the intraclass correlation coefficient (ICC). RESULTS: Stratified by three different categories of 13C-MBT readouts, there was a constant increase of T1 post with increasing progression of diminished liver function (p ≤ 0.030) and a constant significant decrease of ∆R1 (p ≤ 0.025) and rrT1 (p < 0.018) with progression of liver damage as assessed by 13C-methacetin breath analysis. ICC for all T1 relaxation values and indices was excellent (> 0.88). A simple regression model showed a log-linear correlation of 13C-MBT values with T1post (r = 0.57; p < 0.001), ∆R1 (r = 0.59; p < 0.001) and rrT1 (r = 0.70; p < 0.001). CONCLUSION: Liver function as determined using real-time 13C-methacetin breath analysis can be estimated quantitatively from Gd-EOB-DTPA-enhanced MR relaxometry. KEY POINTS: • Gd-EOB-DTPA-enhanced T1 relaxometry quantifies liver function • Gd-EOB-DTPA-enhanced MR relaxometry may provide parameters for assessing liver function before surgery • Gd-EOB-DTPA-enhanced MR relaxometry may be useful for monitoring liver disease progression • Gd-EOB-DTPA-enhanced MR relaxometry has the potential to become a novel liver function index.


Subject(s)
Liver Diseases/diagnosis , Acetamides , Aged , Breath Tests/methods , Carbon Isotopes , Contrast Media , Disease Progression , Female , Gadolinium DTPA , Humans , Liver/physiopathology , Liver Diseases/physiopathology , Liver Function Tests/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Observer Variation , Reproducibility of Results , Retrospective Studies
16.
Jpn J Radiol ; 36(4): 295-302, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29327116

ABSTRACT

PURPOSE: To compare the visualization of hemodynamic imaging findings of hypervascular hepatocellular carcinoma (HCC) on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using radial volumetric imaging breath-hold examination with k-space-weighted image contrast reconstruction (r-VIBE-KWIC) versus dynamic computed tomography during hepatic arteriography (dyn-CTHA). MATERIALS AND METHODS: We retrospectively reviewed the databases of preoperative DCE-MRI using r-VIBE-KWIC, dyn-CTHA, and postoperative pathology of resected specimens. Fourteen patients with 14 hypervascular HCCs underwent both DCE-MRI and dyn-CTHA. The imaging findings of the tumor and adjacent liver parenchyma were assessed on both modalities by two readers. The tumor enhancement time was also compared between the two modalities. RESULTS: On DCE-MRI/dyn-CTHA, early staining, peritumoral low-intensity or low-density bands, corona enhancement, and washout of HCC were observed in 14/14 (100%), 10/12 (83%), 11/14 (78%), and 4/14 (29%) patients, respectively. Pathologically, four HCCs with low-density bands on dyn-CTHA had no fibrous capsules. The median tumor enhancement time on DCE-MRI and dyn-CTHA was 24 (9-24) and 23 (8-35) s, respectively. The correlation coefficient between the two groups was 0.762 (P < 0.002). CONCLUSIONS: DCE-MRI using r-VIBE-KWIC has diagnostic potential comparable with that of dyn-CTHA in the hemodynamic evaluation of hypervascular HCC except for the washout phenomenon.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Computed Tomography Angiography/methods , Contrast Media , Hemodynamics/physiology , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Neovascularization, Pathologic/physiopathology , Aged , Breath Holding , Carcinoma, Hepatocellular/blood supply , Carcinoma, Hepatocellular/physiopathology , Female , Humans , Image Enhancement/methods , Liver/blood supply , Liver/diagnostic imaging , Liver Neoplasms/blood supply , Liver Neoplasms/physiopathology , Male , Neovascularization, Pathologic/diagnostic imaging , Reproducibility of Results , Retrospective Studies
17.
J Magn Reson Imaging ; 47(2): 459-467, 2018 02.
Article in English | MEDLINE | ID: mdl-28594113

ABSTRACT

PURPOSE: To evaluate the feasibility of a self-gated free-breathing volume-interpolated breath-hold examination (VIBE) sequence using compressed sensing (CS) for contrast-enhanced multiphase liver MRI. MATERIALS AND METHODS: We identified 23 patients who underwent multiphase gadobutrol-enhanced liver magnetic resonance imaging (MRI) using 1) a prototype free-breathing VIBE sequence with respiratory self-gating and CS (VIBECS ), and 2) a standard breath-hold VIBE (VIBESTD ) on the same 1.5T scanner at two timepoints. VIBECS was continuously acquired for 128 seconds and a time-series of 16 timepoints was jointly reconstructed from the dataset. The unenhanced, arterial, portal-venous, and venous timepoints with the best image quality were selected and compared to the corresponding VIBESTD series serving as reference. Image quality was assessed qualitatively (image quality, sharpness, lesion conspicuity, vessel contrast, noise, motion/other artifacts; two readers independently; 5-point Likert scale; 5 = excellent) and quantitatively (vessel contrast [VC], coefficient-of-variation [CV]) Statistics were performed using Wilcoxon-sign-rank (ordinal) and paired t-test (continuous variables). RESULTS: Image quality and lesion conspicuity revealed no significant differences between the sequences (P ≥ 0.3). VIBESTD showed a tendency to higher motion artifacts (P ≥ 0.07). Image sharpness significantly increased in VIBECS as compared to VIBESTD (P ≤ 0.03). Arterial phase vessel contrast appeared significantly lower in VIBECS than in VIBESTD (P = 0.04). VIBECS showed reconstruction artifacts not present in VIBESTD (P = 0.001). Image noise was significantly lower in VIBECS than in VIBESTD (P ≤ 0.004). Arterial phase VC was significantly lower in VIBECS than in VIBESTD (P = 0.01). CV revealed no differences between sequences (P = 0.7). CONCLUSION: VIBECS is feasible for continuous free-breathing contrast-enhanced multiphase liver MRI, providing similar image quality and lesion conspicuity as VIBESTD . LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:459-467.


Subject(s)
Contrast Media , Gadolinium DTPA , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Artifacts , Breath Holding , Feasibility Studies , Female , Humans , Liver/diagnostic imaging , Male , Middle Aged
18.
Abdom Radiol (NY) ; 41(8): 1555-64, 2016 08.
Article in English | MEDLINE | ID: mdl-27052456

ABSTRACT

OBJECTIVE: To assess changes in liver proton density fat fraction (PDFF) and R 2* measurements in the presence of changes in tissue relaxation rates induced by administrating gadoxetic acid, using two different image reconstruction methods at 3T MRI. METHODS: Forty-five patients were imaged at 3T with chemical-shift-based MRI sequences before and 20 min after administration of gadoxetic acid. Image reconstructions were performed using hybrid and complex methods to obtain PDFF and R 2* images. A single radiologist measured PDFF and R 2* values on precontrast and postcontrast images. Precontrast and postcontrast PDFF values were compared using intraclass correlation coefficient (ICC), linear regression, and Bland-Altman analysis. Changes in R 2* values from precontrast to postcontrast were correlated with relative liver enhancement (RLE) based on signal intensities on T 1-weighted images using Spearman's rank correlation. RESULTS: PDFF values were similar between precontrast and postcontrast images (ICC = 0.99, linear regression slopes = 0.98, mean difference = -0.21 to -0.31%). PDFF measurements were stable between precontrast and postcontrast images. Changes in R 2* values were correlated with RLE (p < 0.001, r = 0.49-0.71). CONCLUSIONS: PDFF measurements from both image reconstruction methods are stable in the presence of changes in tissue relaxation rates after administering gadoxetic acid at 3T MRI. Changes in R 2* values correlate with established measures of gadoxetic acid uptake based on T 1-weighted images.


Subject(s)
Contrast Media , Gadolinium DTPA , Image Enhancement/methods , Liver Diseases/diagnostic imaging , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Adipose Tissue/diagnostic imaging , Adult , Aged , Aged, 80 and over , Female , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged , Prospective Studies , Protons , Reproducibility of Results , Young Adult
19.
Eur Radiol ; 26(8): 2790-7, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26601972

ABSTRACT

OBJECTIVES: To investigate the superiority of radial volumetric breath-hold examination (r-VIBE) with k-space weighted image contrast reconstruction (KWIC) over Cartesian VIBE (c-VIBE) for reducing motion artefacts. METHODS: We acquired r-VIBE-KWIC and c-VIBE images in 10 healthy volunteers. Each acquisition lasted 24 seconds. The volunteers held their breath for decreasing lengths of time during the acquisitions, from 24 to 0 seconds (protocols A-E). Magnetic resonance images at the level of the right portal vein and confluence of hepatic veins were assessed by two readers using a five-point scale with a higher number indicating a better study. RESULTS: The mean scores for the complete r-VIBE-KWIC series (r-VIBEfull) and first r-VIBE-KWIC series (r-VIBE1) were not significantly lower than those for c-VIBE in any protocols. The mean scores for c-VIBE were lower than those for r-VIBEfull and r-VIBE1 in protocols C and D. The mean score for c-VIBE was lower than that for r-VIBEfull in protocol E. The mean score for the eighth r-VIBE-KWIC series (r-VIBE8) was lower than that for c-VIBE only in protocol B. CONCLUSION: r-VIBE-KWIC minimised artefacts relative to c-VIBE at any slice location. The r-VIBE-KWIC's sub-frame images during the breath-holding period were hardly affected by another failed breath-holding period. KEY POINTS: • A two-reader study revealed r-VIBE-KWIC's advantages over c-VIBE • The image quality of r-VIBE-KWIC's sub-frame images was maintained during breath holding • Full-frame r-VIBE-KWIC images minimized motion artefacts caused by breathing • A complete breath holding over half the acquisition time is recommended for c-VIBE • c-VIBE was susceptible to respiratory motion especially in the subphrenic region.


Subject(s)
Artifacts , Hepatic Veins/diagnostic imaging , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Portal Vein/diagnostic imaging , Adult , Breath Holding , Contrast Media/pharmacology , Female , Healthy Volunteers , Humans , Male , Middle Aged
20.
AJR Am J Roentgenol ; 204(2): 297-306, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25615751

ABSTRACT

OBJECTIVE. The purpose of this study is to prospectively compare hybrid and complex chemical shift-based MRI fat quantification methods against MR spectroscopy (MRS) for the measurement of hepatic steatosis. SUBJECTS AND METHODS. Forty-two subjects (18 men and 24 women; mean ± SD age, 52.8 ± 14 years) were prospectively enrolled and imaged at 3 T with a chemical shift-based MRI sequence and a single-voxel MRS sequence, each in one breath-hold. Proton density fat fraction and rate constant (R2*) using both single- and dual-R2* hybrid fitting methods, as well as proton density fat fraction and R2* maps using a complex fitting method, were generated. A single radiologist colocalized volumes of interest on the proton density fat fraction and R2* maps according to the spectroscopy measurement voxel. Agreement among the three MRI methods and the MRS proton density fat fraction values was assessed using linear regression, intraclass correlation coefficient (ICC), and Bland-Altman analysis. RESULTS. Correlation between the MRI and MRS measures of proton density fat fraction was excellent. Linear regression coefficients ranged from 0.98 to 1.01, and intercepts ranged from -1.12% to 0.49%. Agreement measured by ICC was also excellent (0.99 for all three methods). Bland-Altman analysis showed excellent agreement, with mean differences of -1.0% to 0.6% (SD, 1.3-1.6%). CONCLUSION. The described MRI-based liver proton density fat fraction measures are clinically feasible and accurate. The validation of proton density fat fraction quantification methods is an important step toward wide availability and acceptance of the MRI-based measurement of proton density fat fraction as an accurate and generalizable biomarker.


Subject(s)
Fatty Liver/diagnosis , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prospective Studies , Protons , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...