Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 6(22): 8094-8106, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27878081

ABSTRACT

Climate change is expected to increase climate variability and the occurrence of extreme climatic events, with potentially devastating effects on aquatic ecosystems. However, little is known about the role of climate extremes in structuring aquatic communities or the interplay between climate and local abiotic and biotic factors. Here, we examine the relative influence of climate and local abiotic and biotic conditions on biodiversity and community structure in lake invertebrates. We sampled aquatic invertebrates and measured environmental variables in 19 lakes throughout California, USA, to test hypotheses of the relationship between climate, local biotic and environmental conditions, and the taxonomic and functional structure of aquatic invertebrate communities. We found that, while local biotic and abiotic factors such as habitat availability and conductivity were the most consistent predictors of alpha diversity, extreme climate conditions such as maximum summer temperature and dry-season precipitation were most often associated with multivariate taxonomic and functional composition. Specifically, sites with high maximum temperatures and low dry-season precipitation housed communities containing high abundances of large predatory taxa. Furthermore, both climate dissimilarity and abiotic dissimilarity determined taxonomic turnover among sites (beta diversity). These findings suggest that while local-scale environmental variables may predict alpha diversity, climatic variability is important to consider when projecting broad-scale aquatic community responses to the extreme temperature and precipitation events that are expected for much of the world during the next century.

2.
Am Nat ; 187(4): 447-56, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27028073

ABSTRACT

Determining how adaptive evolution can be coupled to ecological processes is key for developing a more integrative understanding of the demographic factors that regulate populations. Intraspecific competition is an especially important ecological process because it generates negative density dependence in demographic rates. Although ecological factors are most often investigated to determine the strength of density dependence, evolutionary processes such as local adaptation could also feed back to shape variation in the strength of density dependence among populations. Using an experimental approach with damselflies, a predaceous aquatic insect, we find evidence that both density-dependent intraspecific competition and local adaptation can reduce per capita growth rates. In some cases, the effects of local adaptation on reducing per capita growth rates exceeded the ecological competitive effects of a doubling of density. However, we also found that these ecological and evolutionary properties of populations are coupled, and we offer two interpretations of the causes underlying this pattern: (1) the strength of density-dependent competition depends on the extent of local adaptation, or (2) the extent of local adaptation is shaped by the strength of density-dependent competition. Regardless of the underlying causal pathway, these results show how eco-evolutionary dynamics can affect a key demographic process regulating populations.


Subject(s)
Adaptation, Physiological , Biological Evolution , Ecosystem , Odonata/physiology , Animals , California , Larva/growth & development , Larva/physiology , Odonata/growth & development , Population Density , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...