Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Bacteriol ; 203(13): e0014921, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33875545

ABSTRACT

Lipoprotein diacylglyceryl transferase (Lgt) catalyzes the first step in the biogenesis of Gram-negative bacterial lipoproteins which play crucial roles in bacterial growth and pathogenesis. We demonstrate that Lgt depletion in a clinical uropathogenic Escherichia coli strain leads to permeabilization of the outer membrane and increased sensitivity to serum killing and antibiotics. Importantly, we identify G2824 as the first-described Lgt inhibitor that potently inhibits Lgt biochemical activity in vitro and is bactericidal against wild-type Acinetobacter baumannii and E. coli strains. While deletion of a gene encoding a major outer membrane lipoprotein, lpp, leads to rescue of bacterial growth after genetic depletion or pharmacologic inhibition of the downstream type II signal peptidase, LspA, no such rescue of growth is detected after Lgt depletion or treatment with G2824. Inhibition of Lgt does not lead to significant accumulation of peptidoglycan-linked Lpp in the inner membrane. Our data validate Lgt as a novel antibacterial target and suggest that, unlike downstream steps in lipoprotein biosynthesis and transport, inhibition of Lgt may not be sensitive to one of the most common resistance mechanisms that invalidate inhibitors of bacterial lipoprotein biosynthesis and transport. IMPORTANCE As the emerging threat of multidrug-resistant (MDR) bacteria continues to increase, no new classes of antibiotics have been discovered in the last 50 years. While previous attempts to inhibit the lipoprotein biosynthetic (LspA) or transport (LolCDE) pathways have been made, most efforts have been hindered by the emergence of a common mechanism leading to resistance, namely, the deletion of the gene encoding a major Gram-negative outer membrane lipoprotein lpp. Our unexpected finding that inhibition of Lgt is not susceptible to lpp deletion-mediated resistance uncovers the complexity of bacterial lipoprotein biogenesis and the corresponding enzymes involved in this essential outer membrane biogenesis pathway and potentially points to new antibacterial targets in this pathway.


Subject(s)
Escherichia coli/metabolism , Lipoproteins/metabolism , Transferases/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Aspartic Acid Endopeptidases , Bacterial Proteins , Escherichia coli/genetics , Female , Gene Deletion , Gene Expression Regulation, Bacterial/drug effects , Mice , Peptidoglycan/metabolism , Transferases/chemistry , Transferases/genetics , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism
2.
Nature ; 584(7821): 479-483, 2020 08.
Article in English | MEDLINE | ID: mdl-32788728

ABSTRACT

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Subject(s)
Cell Membrane/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/pathogenicity , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acid Motifs , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Binding Sites , Cell Membrane/metabolism , Enzyme Stability , Escherichia coli/cytology , Escherichia coli/drug effects , Genes, Essential , Hydrolases/chemistry , Hydrolases/metabolism , Lipid A/chemistry , Lipid A/metabolism , Lipopolysaccharides/biosynthesis , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Periplasm/chemistry , Periplasm/metabolism , Protein Binding , Virulence
3.
J Bacteriol ; 201(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31036729

ABSTRACT

Capsular polysaccharides (CPSs) are virulence factors for many important pathogens. In Escherichia coli, CPSs are synthesized via two distinct pathways, but both require proteins from the outer membrane polysaccharide export (OPX) family to complete CPS export from the periplasm to the cell surface. In this study, we compare the properties of the OPX proteins from the prototypical group 1 (Wzy-dependent) and group 2 (ABC transporter-dependent) pathways in E. coli K30 (Wza) and E. coli K2 (KpsD), respectively. In addition, we compare an OPX from Salmonella enterica serovar Typhi (VexA), which shares structural properties with Wza, while operating in an ABC transporter-dependent pathway. These proteins differ in distribution in the cell envelope and formation of stable multimers, but these properties do not align with acylation or the interfacing biosynthetic pathway. In E. coli K2, murein lipoprotein (Lpp) plays a role in peptidoglycan association of KpsD, and loss of this interaction correlates with impaired group 2 capsule production. VexA also depends on Lpp for peptidoglycan association, but CPS production is unaffected in an lpp mutant. In contrast, Wza and group 1 capsule production is unaffected by the absence of Lpp. These results point to complex structure-function relationships between different OPX proteins.IMPORTANCE Capsules are protective layers of polysaccharides that surround the cell surface of many bacteria, including that of Escherichia coli isolates and Salmonella enterica serovar Typhi. Capsular polysaccharides (CPSs) are often essential for virulence because they facilitate evasion of host immune responses. The attenuation of unencapsulated mutants in animal models and the involvement of protein families with conserved features make the CPS export pathway a novel candidate for therapeutic strategies. However, appropriate "antivirulence" strategies require a fundamental understanding of the underpinning cellular processes. Investigating export proteins that are conserved across different biosynthesis strategies will give important insight into how CPS is transported to the cell surface.


Subject(s)
Bacterial Capsules/chemistry , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Polysaccharides, Bacterial/chemistry , Bacterial Outer Membrane Proteins/genetics , Biosynthetic Pathways , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lipoproteins/chemistry , Lipoproteins/genetics , Peptidoglycan/chemistry , Periplasmic Proteins/chemistry , Periplasmic Proteins/genetics , Polysaccharides, Bacterial/genetics , Protein Transport , Salmonella typhi/chemistry , Salmonella typhi/genetics
4.
Article in English | MEDLINE | ID: mdl-30104274

ABSTRACT

There is a critical need for new antibacterial strategies to counter the growing problem of antibiotic resistance. In Gram-negative bacteria, the outer membrane (OM) provides a protective barrier against antibiotics and other environmental insults. The outer leaflet of the outer membrane is primarily composed of lipopolysaccharide (LPS). Outer membrane biogenesis presents many potentially compelling drug targets as this pathway is absent in higher eukaryotes. Most proteins involved in LPS biosynthesis and transport are essential; however, few compounds have been identified that inhibit these proteins. The inner membrane ABC transporter MsbA carries out the first essential step in the trafficking of LPS to the outer membrane. We conducted a biochemical screen for inhibitors of MsbA and identified a series of quinoline compounds that kill Escherichia coli through inhibition of its ATPase and transport activity, with no loss of activity against clinical multidrug-resistant strains. Identification of these selective inhibitors indicates that MsbA is a viable target for new antibiotics, and the compounds we identified serve as useful tools to further probe the LPS transport pathway in Gram-negative bacteria.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Anti-Bacterial Agents/pharmacology , Biological Transport/drug effects , Biological Transport/physiology , Escherichia coli/drug effects
5.
Proc Natl Acad Sci U S A ; 115(14): 3692-3697, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29555747

ABSTRACT

The folding and insertion of integral ß-barrel membrane proteins into the outer membrane of Gram-negative bacteria is required for viability and bacterial pathogenesis. Unfortunately, the lack of selective and potent modulators to dissect ß-barrel folding in vivo has hampered our understanding of this fundamental biological process. Here, we characterize a monoclonal antibody that selectively inhibits an essential component of the Escherichia coli ß-barrel assembly machine, BamA. In the absence of complement or other immune factors, the unmodified antibody MAB1 demonstrates bactericidal activity against an E. coli strain with truncated LPS. Direct binding of MAB1 to an extracellular BamA epitope inhibits its ß-barrel folding activity, induces periplasmic stress, disrupts outer membrane integrity, and kills bacteria. Notably, resistance to MAB1-mediated killing reveals a link between outer membrane fluidity and protein folding by BamA in vivo, underscoring the utility of this antibody for studying ß-barrel membrane protein folding within a living cell. Identification of this BamA antagonist highlights the potential for new mechanisms of antibiotics to inhibit Gram-negative bacterial growth by targeting extracellular epitopes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibodies, Bacterial/pharmacology , Antibodies, Monoclonal/pharmacology , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/drug effects , Membrane Fluidity/drug effects , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/immunology , Cell Membrane/metabolism , Escherichia coli/immunology , Escherichia coli/metabolism , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Models, Molecular , Protein Conformation , Protein Folding
6.
Article in English | MEDLINE | ID: mdl-29339384

ABSTRACT

The outer membrane is an essential structural component of Gram-negative bacteria that is composed of lipoproteins, lipopolysaccharides, phospholipids, and integral ß-barrel membrane proteins. A dedicated machinery, called the Lol system, ensures proper trafficking of lipoproteins from the inner to the outer membrane. The LolCDE ABC transporter is the inner membrane component, which is essential for bacterial viability. Here, we report a novel pyrrolopyrimidinedione compound, G0507, which was identified in a phenotypic screen for inhibitors of Escherichia coli growth followed by selection of compounds that induced the extracytoplasmic σE stress response. Mutations in lolC, lolD, and lolE conferred resistance to G0507, suggesting LolCDE as its molecular target. Treatment of E. coli cells with G0507 resulted in accumulation of fully processed Lpp, an outer membrane lipoprotein, in the inner membrane. Using purified protein complexes, we found that G0507 binds to LolCDE and stimulates its ATPase activity. G0507 still binds to LolCDE harboring a Q258K substitution in LolC (LolCQ258K), which confers high-level resistance to G0507 in vivo but no longer stimulates ATPase activity. Our work demonstrates that G0507 has significant promise as a chemical probe to dissect lipoprotein trafficking in Gram-negative bacteria.


Subject(s)
Gram-Negative Bacteria/metabolism , Lipoproteins/metabolism , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gram-Negative Bacteria/drug effects , Lipoproteins/genetics , Mutation/genetics , Protein Transport/drug effects , Protein Transport/genetics
7.
mBio ; 8(3)2017 05 23.
Article in English | MEDLINE | ID: mdl-28536290

ABSTRACT

Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro, the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for "group 2" capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates.IMPORTANCE Uropathogenic E. coli (UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistance in vitro and for complement-mediated bacterial clearance in vivo This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of "group 2" capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for murein lipoprotein in complex interactions between different outer membrane biogenesis pathways and further highlight the importance of lipoprotein assembly and transport in bacterial pathogenesis.


Subject(s)
Bacterial Capsules/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Lipoproteins/metabolism , Periplasmic Proteins/metabolism , Serum/microbiology , Uropathogenic Escherichia coli/physiology , Animals , Bacteremia/microbiology , Bacterial Outer Membrane Proteins/genetics , Blood Bactericidal Activity , Disease Models, Animal , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Lipoproteins/genetics , Mice , Microbial Viability , Mutation , Peptidoglycan/genetics , Uropathogenic Escherichia coli/genetics
8.
Adv Exp Med Biol ; 883: 295-315, 2015.
Article in English | MEDLINE | ID: mdl-26621474

ABSTRACT

Surface polysaccharides are an often essential component of the outer surface of bacteria. They may serve to protect organisms from harsh environmental conditions and to increase virulence. The focus of this review will be to introduce polysaccharide biosynthesis and export from the cell, and the associated techniques used to determine these glycostructures. Protein interactions and proteomics will then be discussed while introducing systems biology approaches used to determine protein-protein and protein-polysaccharide interactions. The final section will address related screening methods used to study gene regulation in bacteria relating to polysaccharide gene clusters and their associated regulators. The goal of this review will be to highlight key studies that have increased our knowledge of glycobiology and discuss novel methods that examine this field at the cellular level using systems biology.


Subject(s)
Polysaccharides, Bacterial/chemistry , Systems Biology , Glycosyltransferases , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/genetics , Sequence Analysis, RNA , Two-Hybrid System Techniques
9.
Sci Rep ; 5: 15068, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26463896

ABSTRACT

Like several other large, multimeric bacterial outer membrane proteins (OMPs), the assembly of the Klebsiella oxytoca OMP PulD does not rely on the universally conserved ß-barrel assembly machinery (BAM) that catalyses outer membrane insertion. The only other factor known to interact with PulD prior to or during outer membrane targeting and assembly is the cognate chaperone PulS. Here, in vitro translation-transcription coupled PulD folding demonstrated that PulS does not act during the membrane insertion of PulD, and engineered in vivo site-specific cross-linking between PulD and PulS showed that PulS binding does not prevent membrane insertion. In vitro folding kinetics revealed that PulD is atypical compared to BAM-dependent OMPs by inserting more rapidly into membranes containing E. coli phospholipids than into membranes containing lecithin. PulD folding was fast in diC14:0-phosphatidylethanolamine liposomes but not diC14:0-phosphatidylglycerol liposomes, and in diC18:1-phosphatidylcholine liposomes but not in diC14:1-phosphatidylcholine liposomes. These results suggest that PulD efficiently exploits the membrane composition to complete final steps in insertion and explain how PulD can assemble independently of any protein-assembly machinery. Lipid-assisted assembly in this manner might apply to other large OMPs whose assembly is BAM-independent.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Cell Membrane/chemistry , Escherichia coli Proteins/chemistry , Lipid Bilayers/chemistry
10.
Proc Natl Acad Sci U S A ; 111(22): 8203-8, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24843147

ABSTRACT

The outer membrane (OM) of Gram-negative bacteria is designed to exclude potentially harmful molecules. This property presents a challenge for bacteria that must secrete proteins and large glycoconjugates to grow, divide, and persist. Proteins involved in trafficking such molecules have been identified, but their precise roles are often unresolved due to the difficulty in capturing "snapshots" during the export pathway. Wza is the prototype for the large family of OM polysaccharide export proteins. In Escherichia coli, Wza is essential for the assembly of a capsule, a protective surface coat composed of long-chain polysaccharides. Wza creates an octameric α-helical channel spanning the OM, but the bulk of the protein exists as a large periplasmic structure enclosing an extensive lumen. Residues within the lumen of Wza were targeted for site-specific incorporation of the UV photo-cross-linkable unnatural amino acid p-benzoyl-L-phenylalanine. Using this in vivo photo-cross-linking strategy, we were able to trap polysaccharide translocation intermediates within the lumen of Wza, providing the first unequivocal evidence to our knowledge that nascent capsular polysaccharide chains exit the cell through the Wza portal.


Subject(s)
Bacterial Capsules/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Polysaccharides, Bacterial/metabolism , Amino Acid Sequence , Bacterial Capsules/chemistry , Bacterial Outer Membrane Proteins/chemistry , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Escherichia coli Proteins/chemistry , Molecular Sequence Data , Polysaccharides, Bacterial/chemistry , Protein Structure, Quaternary , Protein Structure, Tertiary
11.
Article in English | MEDLINE | ID: mdl-22919639

ABSTRACT

Staphylococcus aureus clonal complex CC30 has caused infectious epidemics for more than 60 years, and, therefore, provides a model system to evaluate how evolution has influenced the disease potential of closely related strains. In previous multiple genome comparisons, phylogenetic analyses established three major branches that evolved from a common ancestor. Clade 1, comprised of historic pandemic phage type 80/81 methicillin susceptible S. aureus (MSSA), and Clade 2 comprised of contemporary community acquired methicillin resistant S. aureus (CA-MRSA) were hyper-virulent in murine infection models. Conversely, Clade 3 strains comprised of contemporary hospital associated MRSA (HA-MRSA) and clinical MSSA exhibited attenuated virulence, due to common single nucleotide polymorphisms (SNP's) that abrogate production of α-hemolysin Hla, and interfere with signaling of the accessory gene regulator agr. We have now completed additional in silico genome comparisons of 15 additional CC30 genomes in the public domain, to assess the hypothesis that Clade 3 has evolved to favor niche adaptation. In addition to SNP's that influence agr and hla, other common traits of Clade 3 include tryptophan auxotrophy due to a di-nucleotide deletion within trpD, a premature stop codon within isdH encoding an immunogenic cell surface protein involved in iron acquisition, loss of a genomic toxin-antitoxin (TA) addiction module, acquisition of S. aureus pathogenicity islands SaPI4, and SaPI2 encoding toxic shock syndrome toxin tst, and increased copy number of insertion sequence ISSau2, which appears to target transcription terminators. Compared to other Clade 3 MSSA, S. aureus MN8, which is associated with Staphylococcal toxic shock syndrome, exhibited a unique ISSau2 insertion, and enhanced production of toxic shock syndrome toxin encoded by SaPI2. Cumulatively, our data support the notion that Clade 3 strains are following an evolutionary blueprint toward niche-adaptation.


Subject(s)
Adaptation, Biological , Evolution, Molecular , Staphylococcus aureus/genetics , Animals , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Computational Biology , Genome, Bacterial , Genomic Islands , Genotype , Humans , Interspersed Repetitive Sequences , Recombination, Genetic , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Virulence Factors/genetics
12.
J Bacteriol ; 194(18): 4951-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22773793

ABSTRACT

Secretins form large multimeric complexes in the outer membranes of many Gram-negative bacteria, where they function as dedicated gateways that allow proteins to access the extracellular environment. Despite their overall relatedness, different secretins use different specific and general mechanisms for their targeting, assembly, and membrane insertion. We report that all tested secretins from several type II secretion systems and from the filamentous bacteriophage f1 can spontaneously multimerize and insert into liposomes in an in vitro transcription-translation system. Phylogenetic analyses indicate that these secretins form a group distinct from the secretins of the type IV piliation and type III secretion systems, which do not autoassemble in vitro. A mutation causing a proline-to-leucine substitution allowed PilQ secretins from two different type IV piliation systems to assemble in vitro, albeit with very low efficiency, suggesting that autoassembly is an inherent property of all secretins.


Subject(s)
Amino Acid Substitution , Protein Multimerization , Secretin/genetics , Secretin/metabolism , Bacteria/enzymology , Cluster Analysis , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Inovirus/enzymology , Liposomes/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phylogeny , Sequence Homology, Amino Acid
13.
mBio ; 2(6)2011.
Article in English | MEDLINE | ID: mdl-22147293

ABSTRACT

UNLABELLED: In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways. Reduction in the level of BamA significantly affected the ability of the ß-barrel membrane protein OprF to localize to the OM, while the targeting of three secretins that are functionally related OM proteins was less affected (PilQ and PscC) or not at all affected (XcpQ). Depletion of LolB affected all lipoproteins examined and had a variable effect on the nonlipidated proteins. While the levels of OprF, PilQ, and PscC were significantly reduced by LolB depletion, XcpQ was unaffected and was correctly localized to the OM. These results suggest that certain ß-barrel proteins such as OprF primarily utilize the complete Bam machinery. The Lol machinery participates in the OM targeting of secretins to variable degrees, likely through its involvement in the assembly of lipidated Bam components. XcpQ, but not PilQ or PscC, was shown to assemble spontaneously into liposomes as multimers. This work raises the possibility that there is a gradient of utilization of Bam and Lol insertion and targeting machineries. Structural features of individual proteins, including their ß-barrel content, may determine the propensity of these proteins for folding (or misfolding) during periplasmic transit and OM insertion, thereby influencing the extent of utilization of the Bam targeting machinery, respectively. IMPORTANCE: Targeting of lipidated and nonlipidated proteins to the outer membrane (OM) compartment in Gram-negative bacteria involves the transfer across the periplasm utilizing the Lol and Bam machineries, respectively. We show that depletion of Bam and Lol components in Pseudomonas aeruginosa does not lead to a general OM protein translocation defect, but the severity (and therefore, Lol and Bam dependence), varies with individual proteins. XcpQ, the secretin component of the type II secretion apparatus, is translocated into the OM without the assistance of Bam or Lol machineries. The hypothesis that XcpQ, after secretion across the cytoplasmic membrane, does not utilize the OM targeting machineries was supported by demonstrating that in vitro-synthesized XcpQ (but not the other P. aeruginosa secretins) can spontaneously incorporate into lipid vesicles. Therefore, the requirement for ancillary factors appears to be, in certain instances, dictated by the intrinsic properties of individual OM proteins, conceivably reflecting their propensities to misfold during periplasmic transit.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Lipoproteins/metabolism , Protein Transport
14.
Mol Microbiol ; 82(6): 1422-32, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22098633

ABSTRACT

A crucial aspect of the functionality of bacterial type II secretion systems is the targeting and assembly of the outer membrane secretin. In the Klebsiella oxytoca type II secretion system, the lipoprotein PulS, a pilotin, targets secretin PulD monomers through the periplasm to the outer membrane. We present the crystal structure of PulS, an all-helical bundle that is structurally distinct from proteins with similar functions. Replacement of valine at position 42 in a charged groove of PulS abolished complex formation between a non-lipidated variant of PulS and a peptide corresponding to the unfolded region of PulD to which PulS binds (the S-domain), in vitro, as well as PulS function in vivo. Substitutions of other residues in the groove also diminished the interaction with the S-domain in vitro but exerted less marked effects in vivo. We propose that the interaction between PulS and the S-domain is maintained through a structural adaptation of the two proteins that could be influenced by cis factors such as the fatty acyl groups on PulS, as well as periplasmic trans-acting factors, which represents a possible paradigm for chaperone-target protein interactions.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Secretion Systems , Klebsiella oxytoca/metabolism , Molecular Chaperones/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Klebsiella oxytoca/chemistry , Klebsiella oxytoca/genetics , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary
15.
J Biol Chem ; 286(45): 38833-43, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-21878629

ABSTRACT

Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS. Limited proteolysis and mass spectrometry identified the 28 C-terminal residues of the S domain as a minimal binding site with low nanomolar affinity for PulS in vitro that is sufficient for outer membrane targeting of PulD in vivo. The region upstream of this binding site is not required for targeting or multimerization and does not interact with PulS, but it is required for secretin function in type II secretion. Although other secretin chaperones differ substantially from PulS in sequence and secondary structure, they have all adopted at least superficially similar mechanisms of interaction with their cognate secretins, suggesting that intrinsically disordered regions facilitate rapid interaction between secretins and their chaperones.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Molecular Chaperones/chemistry , Protein Folding , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Secretion Systems/physiology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Lipoproteins/chemistry , Lipoproteins/genetics , Lipoproteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary
16.
Mol Microbiol ; 80(3): 655-65, 2011 May.
Article in English | MEDLINE | ID: mdl-21338419

ABSTRACT

The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipoproteins/metabolism , Membrane Transport Proteins/metabolism , Molecular Chaperones/metabolism , Periplasmic Binding Proteins/metabolism , Amino Acid Substitution , Bacterial Outer Membrane Proteins/genetics , Escherichia coli Proteins/genetics , Molecular Chaperones/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Periplasmic Binding Proteins/genetics , Protein Transport
17.
Res Microbiol ; 162(2): 180-90, 2011.
Article in English | MEDLINE | ID: mdl-21256212

ABSTRACT

The C-terminal core domain of the secretin PulD from Klebsiella oxytoca forms heat-resistant dodecameric complexes within less than 10min in an Escherichia coli in vitro transcription-translation system containing liposomes, and is toxic when made in the cytoplasm without a signal peptide. Random mutagenesis of DNA encoding this region of PulD revealed that amino acid changes throughout almost its entire length abolished toxicity. Most of the amino acid substitutions engendered by the mutations retarded or abolished assembly of the dodecameric secretin complex in vitro and/or in the periplasm. Only one of the tested multimerization-defective variants could be rescued by co-production and mixed multimer formation with wild-type secretin in vitro. A three amino acid insertion specifically generated in a region of PulD that was not affected by the spontaneous mutations formed functional multimers that, unlike the wild-type protein, were dissociated by heating in SDS.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Genetic Variation , Klebsiella oxytoca/metabolism , Protein Multimerization , Amino Acid Substitution , Bacterial Outer Membrane Proteins/genetics , Cell Membrane/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Klebsiella oxytoca/chemistry , Klebsiella oxytoca/genetics , Mutagenesis, Insertional , Mutation
18.
Mol Microbiol ; 75(1): 161-77, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19943908

ABSTRACT

The scpAB and sspABC operons of Staphylococcus aureus encode Staphopain cysteine proteases ScpA and SspB, and their respective Staphostatins ScpB and SspC, which are thought to protect against premature activation of Staphopain precursors during protein export. However, we found that the proSspB precursor was secreted and activated without detriment to S. aureus in the absence of SspC function. Our data indicate that this is feasible due to a restricted substrate specificity of mature SspB, a stable precursor structure and slow secretion kinetics. In contrast, mature ScpA had a broad substrate specificity, such that it was prone to autolytic degradation, but also was uniquely able to degrade elastin fibres. Modelling of proScpA relative to the proSspB structure identified several differences, which appear to optimize proScpA for autocatalytic activation, whereas proSspB is optimized for stability, and cannot initiate autocatalytic activation. Consequently, recombinant proSspB remained stable and unprocessed when retained in the cytoplasm of Escherichia coli, whereas proScpA initiated rapid autocatalytic activation, leading to capture of an activation intermediate by ScpB. We conclude that the status of sspBC in S. aureus, as paralogues of the ancestral scpAB genes, facilitated a different activation mechanism, a stable proSspB isoform and modified Staphostatin function.


Subject(s)
Cysteine Endopeptidases/metabolism , Protein Precursors/metabolism , Staphylococcus aureus/metabolism , Amino Acid Sequence , Cytoplasm/metabolism , Elastin/metabolism , Escherichia coli/metabolism , Models, Molecular , Molecular Sequence Data , Protein Stability , Protein Structure, Tertiary , Substrate Specificity
19.
Mol Microbiol ; 69(6): 1530-43, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18673454

ABSTRACT

SUMMARY: The Staphylococcus aureus proteolytic cascade consists of a metalloprotease aureolysin (Aur), which activates a serine protease zymogen proSspA, which in turn activates the SspB cysteine protease. As with other M4 metalloproteases, including elastase of Pseudomonas aeruginosa, the propeptide of proAur contains an N-terminal fungalysin-thermolysin-propeptide (FTP) domain. Autocatalytic activation of proAur was initiated by processing at T85 downward arrowL(86) in the FTP domain. This differed from the mechanism described for proElastase, where the FTP domain has an RY motif in place of TL(86), and processing occurred at the junction of the propeptide and metalloprotease domains, which remained as an inactive complex during passage across the outer membrane. When TL(86) in the FTP domain was replaced with RY, an intact N-terminal propeptide was secreted, but the M4 metalloprotease domain was degraded. Consequently, this segment of the FTP domain promotes intramolecular processing of proAur while bestowing a chaperone function, but discourages processing within the FTP domain of proElastase, where activation must be co-ordinated with passage across a second membrane. We conclude that the FTP domain of proAur is adapted to facilitate a rapid autocatalytic activation mechanism, consistent with the role or proAur as initiator of the staphylococcal proteolytic cascade.


Subject(s)
Bacterial Proteins/metabolism , Metalloendopeptidases/metabolism , Staphylococcus aureus/enzymology , Thermolysin/metabolism , Amino Acid Sequence , Molecular Sequence Data , Pancreatic Elastase/metabolism , Protein Processing, Post-Translational , Protein Structure, Tertiary , Pseudomonas aeruginosa/enzymology , Sequence Alignment
20.
J Biol Chem ; 282(47): 34129-38, 2007 Nov 23.
Article in English | MEDLINE | ID: mdl-17878159

ABSTRACT

The serine and cysteine proteases SspA and SspB of Staphylococcus aureus are secreted as inactive zymogens, zSspA and zSspB. Mature SspA is a trypsin-like glutamyl endopeptidase and is required to activate zSspB. Although a metalloprotease Aureolysin (Aur) is in turn thought to contribute to activation of zSspA, a specific role has not been demonstrated. We found that pre-zSspA is processed by signal peptidase at ANA(29) downward arrow, releasing a Leu(30) isoform that is first processed exclusively through autocatalytic intramolecular cleavage within a glutamine-rich propeptide segment, (40)QQTQSSKQQTPKIQ(53). The preferred site is Gln(43) with secondary processing at Gln(47) and Gln(53). This initial processing is necessary for optimal and subsequent Aur-dependent processing at Leu(58) and then Val(69) to release mature SspA. Although processing by Aur is rate-limiting in zSspA activation, the first active molecules of Val(69)SspA promote rapid intermolecular processing of remaining zSspA at Glu(65), producing an N-terminal (66)HANVILP isoform that is inactive until removal of the HAN tripeptide by Aur. Modeling indicated that His(66) of this penultimate isoform blocks the active site by hydrogen bonding to Ser(237) and occlusion of substrate. Binding of glutamate within the active site of zSspA is energetically unfavorable, but glutamine fits into the primary specificity pocket and is predicted to hydrogen bond to Thr(232) proximal to Ser(237), permitting autocatalytic cleavage of the glutamine-rich propeptide segment. These and other observations suggest that zSspA is activated through a trypsinogen-like mechanism where supplementary features of the propeptide must be sequentially processed in the correct order to allow efficient activation.


Subject(s)
Bacterial Proteins/chemistry , Metalloendopeptidases/chemistry , Metalloproteases/chemistry , Models, Molecular , Serine Endopeptidases/chemistry , Staphylococcus aureus/enzymology , Trypsinogen/chemistry , Amino Acids/chemistry , Amino Acids/metabolism , Bacterial Proteins/metabolism , Binding Sites/physiology , Enzyme Activation/physiology , Hydrogen Bonding , Metalloendopeptidases/metabolism , Metalloproteases/metabolism , Protein Processing, Post-Translational/physiology , Protein Sorting Signals/physiology , Serine Endopeptidases/metabolism , Trypsinogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...