Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 84(5): 053302, 2013 May.
Article in English | MEDLINE | ID: mdl-23742540

ABSTRACT

We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

2.
Rev Sci Instrum ; 83(8): 083301, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22938287

ABSTRACT

Liquid ethanol (C(2)H(5)OH) was used to generate a spray of sub-micron droplets. Sprays with different nozzle geometries have been tested and characterised using Mie scattering to find scaling properties and to generate droplets with different diameters within the spray. Nozzles having throat diameters of 470 µm and 560 µm showed generation of ethanol spray with droplet diameters of (180 ± 10) nm and (140 ± 10) nm, respectively. These investigations were motivated by the observation of copious negative ions from these target systems, e.g., negative oxygen and carbon ions measured from water and ethanol sprays irradiated with ultra-intense (5 × 10(19) W/cm(2)), ultra short (40 fs) laser pulses. It is shown that the droplet diameter and the average atomic density of the spray have a significant effect on the numbers and energies of accelerated ions, both positive and negative. These targets open new possibilities for the creation of efficient and compact sources of different negative ion species.

3.
Rev Sci Instrum ; 83(2): 02A710, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380219

ABSTRACT

Experimental demonstration of negative ion acceleration to MeV energies from sub-micron size droplets of water spray irradiated by ultra-intense laser pulses is presented. Thanks to the specific target configuration and laser parameters, more than 10(9) negative ions per steradian solid angle in 5% energy bandwidth are accelerated in a stable and reliable manner. To our knowledge, by virtue of the ultra-short duration of the emission, this is by far the brightest negative ion source reported. The data also indicate the existence of beams of neutrals with at least similar numbers and energies.

4.
Opt Express ; 18(7): 7253-62, 2010 Mar 29.
Article in English | MEDLINE | ID: mdl-20389746

ABSTRACT

We present a reflection based coherent diffraction imaging method which can be used to reconstruct a non periodic surface image from a diffraction amplitude measured in reflection geometry. Using a He-Ne laser, we demonstrated that a surface image can be reconstructed solely from the reflected intensity from a surface without relying on any prior knowledge of the sample object or the object support. The reconstructed phase image of the exit wave is particularly interesting since it can be used to obtain quantitative information of the surface depth profile or the phase change during the reflection process. We believe that this work will broaden the application areas of coherent diffraction imaging techniques using light sources with limited penetration depth.


Subject(s)
Image Processing, Computer-Assisted , Optics and Photonics , Algorithms , Computer Simulation , Equipment Design , Gold/chemistry , Imaging, Three-Dimensional , Lasers , Silicon/chemistry , Surface Properties , Ultraviolet Rays , X-Rays
5.
Phys Rev Lett ; 103(13): 135003, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19905518

ABSTRACT

Laser-driven ion acceleration is capable of generating ion beams of MeV energy exhibiting unique attributes such as ultralow emittance. Research is still focusing on fundamental laser-target interactions to control further beam attributes. In this Letter we present the observation of directional ion acceleration of irradiated spherical targets through proton imaging. This feature, together with an earlier observed quasimonoenergetic proton burst makes spherical targets extremely attractive candidates for high quality, high repetition rate sources of laser accelerated particles.

6.
Rev Sci Instrum ; 80(10): 103302, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19895055

ABSTRACT

Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

7.
Opt Lett ; 34(9): 1378-80, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19412278

ABSTRACT

We are reporting on the development of a diode-pumped chirped-pulse-amplification (CPA) laser system based on Yb:YAG thin-disk technology with a repetition rate of 100 Hz and output pulse energy in the joule range. The focus lies with the first results of the preamplifier--a regenerative amplifier (RA) and a multipass amplifier (MP). The system consists of a front end including the CPA stretcher followed by an amplifier chain based on Yb:YAG thin-disk amplifiers and the CPA compressor. It is developed in the frame of our x-ray laser (XRL) program and fulfills all requirements for pumping a plasma-based XRL in grazing incidence pumping geometry. Of course it can also be used for other interesting applications. With the RA pulse energies of more than 165 mJ can be realized. At a repetition rate of 100 Hz a stability of 0.8% (1sigma) over a period of more than 45 min has been measured. The optical-to-optical efficiency is 14%. The following MP amplifier can increase the pulse energy to more than 300 mJ. A nearly bandwidth-limited recompression to less than 2 ps could be demonstrated.

8.
Phys Rev Lett ; 103(24): 245003, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20366205

ABSTRACT

We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10(19) W/cm2. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C6+ ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.

9.
Rev Sci Instrum ; 79(3): 033303, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18377003

ABSTRACT

Laser accelerated proton beams have been used for field characterization in expanding plasmas. The Thomson parabola spectrometer, as a charged particles analyzer, also allows precise measurement of the charged particles' trajectories. The proton's deflections by fast changing plasma fields can be measured with the new design of the Thomson parabola spectrometer and, therefore, it can be applied for proton deflectometry. It is shown that from resulting spectrograms the plasma field dynamics can be reconstructed with high temporal resolution. In a proof-of-principle experiment, a weakly relativistic plasma expansion is studied as an example.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 2): 016403, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18351940

ABSTRACT

Two different laser energy absorption mechanisms at the front side of a laser-irradiated foil have been found to occur, such that two distinct relativistic electron beams with different properties are produced. One beam arises from the ponderomotively driven electrons propagating in the laser propagation direction, and the other is the result of electrons driven by resonance absorption normal to the target surface. These properties become evident at the rear surface of the target, where they give rise to two spatially separated sources of ions with distinguishable characteristics when ultrashort (40fs) high-intensity laser pulses irradiate a foil at 45 degrees incidence. The laser pulse intensity and the contrast ratio are crucial. One can establish conditions such that one or the other of the laser energy absorption mechanisms is dominant, and thereby one can control the ion acceleration scenarios. The observations are confirmed by particle-in-cell (PIC) simulations.

11.
Phys Rev Lett ; 96(14): 145006, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16712088

ABSTRACT

We report on the generation and laser acceleration of bunches of energetic deuterons with a small energy spread at about 2 MeV. This quasimonoenergetic peak within the ion energy spectrum was observed when heavy-water microdroplets were irradiated with ultrashort laser pulses of about 40 fs duration and high (10(-8)) temporal contrast, at an intensity of 10(19) W/cm(2). The results can be explained by a simple physical model related to spatial separation of two ion species within a finite-volume target. The production of quasimonoenergetic ions is a long-standing goal in laser-particle acceleration; it could have diverse applications such as in medicine or in the development of future compact ion accelerators.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 2): 037401, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16241626

ABSTRACT

The operation of a Ni-like Mo x-ray laser at 18.9 nm with a repetition rate of 10 Hz has been demonstrated. The laser has been pumped applying the grazing incidence pump arrangement, where a short (picoseconds) pulse irradiates a Mo plasma column generated by a long (a few hundred picoseconds) pulse. The delayed short pulse is incident at a grazing angle on the plasma to heat it efficiently. We used a total energy of less than 450 mJ ( 150 mJ in the long and 250-300 mJ in the short pulse) in a line focus of 7 mm by 50 microm .

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 056401, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15600759

ABSTRACT

An efficient acceleration of energetic ions is observed when small heavy-water droplets of approximately 20 microm diameter are exposed to ultrafast (approximately 40 fs) Ti:sapphire laser pulses of up to 10(19) W/cm2 intensity. Quantitative measurements of deuteron and neutron spectra were done, allowing one to analyze the outward and inward directed deuteron acceleration from the droplet. Neutron spectroscopy based on the D (d,n) fusion reaction was accomplished in four different spatial directions. The energy shifts of those fusion neutrons produced inside the exploding droplet reflect a remaining deuteron acceleration inside the irradiated droplet along the axis of the incident laser beam. The overall neutron yield of the microdroplets is relatively small as a result of the dominant outward directed acceleration of the deuterons with 1200 neutrons/shot. Relying on the "explosion-like" acceleration of such spherical droplet targets we have developed a spray target consisting of heavy-water microspheres with diameters of 150 nm . Both the high deuteron energies of up to 1 MeV resulting from the irradiation intensity of approximately 10(19) W/cm2 as well as the collisions between the deuterons and the surrounding spray delivered about one order of magnitude more neutrons than the single-droplet system. The approximately 6 x 10(3) neutrons per laser pulse from the spray can be attributed to an efficient deuteron release from a significantly smaller laser excited volume as from deuterium-cluster targets.

14.
Phys Rev Lett ; 93(15): 155006, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15524895

ABSTRACT

Deep dips in MeV ion spectra are obtained from water droplet targets irradiated by intense [(0.5-1.2) x 10(19) W/cm(2)] and ultrashort (35 fs) laser pulses. The existence of these dips is ascribed to the generation of a multielectron-temperature plasma, which is confirmed by our experiments. An existing fluid model based on hot-electron components with significantly different temperatures is consistent with the behavior we observe in the ion spectra of the femtosecond laser-driven interaction. The model provides a good simulation of the observed spectral dips and allows us to establish important parameters such as hot- and cold-electron temperatures and the respective electron density ratios. The result may be of interest for spectral tailoring of proton spectra in future applications of laser-generated proton beams.

15.
Opt Lett ; 29(8): 881-3, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15119409

ABSTRACT

The degree of spatial coherence in the direction perpendicular to the target surface is reported for a transient nickellike silver x-ray laser at 13.9 nm. An x-ray laser plasma column was produced by irradiating a slab silver target with a single shaped picosecond laser pulse with energy less than 3 J. Young's double-slit method was applied to measure the fringe visibility as a function of the slit separation for different target lengths. The diameter of the equivalent incoherent source and the coherence radius of the output radiation were determined as well.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(3 Pt 2): 036404, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11580451

ABSTRACT

Large Xe clusters (10(5)-10(6) atoms per cluster) have been irradiated with ultrashort (50 fs) and high-intensity ( approximately 2 x 10(18) W/cm(2)) pulses from a Ti:sapphire multi-TW laser at 800 nm wavelength. Scaling and absolute yield measurements of extreme ultraviolet (EUV) emission in a wavelength range between 7 and 15 nm in combination with cluster target characterization have been used for yield optimization. Maximum emission as a function of the backing pressure and a spatial emission anisotropy covering a factor of two at optimized yields is discussed with a simple model of the source geometry and EUV-radiation absorption. Circularly polarized laser light instead of linear polarization results in a factor of 2.5 higher emission in the 11 to 15 nm wavelength range. This indicates the initial influence of optical-field ionization for the interaction parameter range used and contrasts to collisional heating that seems to influence preferentially higher ionization. Absolute emission efficiency at 13.4 nm of up to 0.5% in 2pi sr and 2.2% bandwidth has been obtained.


Subject(s)
Lasers , Ultraviolet Rays , Xenon , Anisotropy , Ions , Physical Phenomena , Physics , Pressure , Time Factors
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(1 Pt 2): 016414, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11461417

ABSTRACT

Detailed neutron energy spectra were measured for the D(d,n)3He reaction induced in solid (CD2)(n) targets by irradiation with 50-fs 2 x 10(18) W/cm(2) light pulses from a 10-TW Ti:Sapphire laser. The neutrons were observed at two angles 5 degrees and 112 degrees relative to the incident laser beam. The neutron spectra at the two angles are characterized by peaks with large widths of about 700 keV full width at half maximum and a shift of 300 keV between them. Neutron energies of up to about 4 MeV were observed indicating that deuterons are accelerated up to an energy of 1 MeV in the laser produced plasma. Simulation calculations can describe qualitatively the neutron spectra by assuming isotropic deuteron acceleration and a reduction of the reaction probability by a factor of 1/3 for deuterons emitted from the front of the target. These calculations indicate in particular that it is necessary to assume deuterons moving both into and out of the front of the target in order to describe the neutron energy spectra at the two angles. The highest recorded mean neutron yield was about 10(4) neutrons per pulse. The neutron yield increases with the number of electrons emitted from the front of the target and with the intensity of the prompt gamma flash induced by the bremsstrahlung of energetic electrons.

SELECTION OF CITATIONS
SEARCH DETAIL
...