Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 137(4): 76, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459215

ABSTRACT

The use of tomato rootstocks has helped to alleviate the soaring abiotic stresses provoked by the adverse effects of climate change. Lateral and adventitious roots can improve topsoil exploration and nutrient uptake, shoot biomass and resulting overall yield. It is essential to understand the genetic basis of root structure development and how lateral and adventitious roots are produced. Existing mutant lines with specific root phenotypes are an excellent resource to analyse and comprehend the molecular basis of root developmental traits. The tomato aerial roots (aer) mutant exhibits an extreme adventitious rooting phenotype on the primary stem. It is known that this phenotype is associated with restricted polar auxin transport from the juvenile to the more mature stem, but prior to this study, the genetic loci responsible for the aer phenotype were unknown. We used genomic approaches to define the polygenic nature of the aer phenotype and provide evidence that increased expression of specific auxin biosynthesis, transport and signalling genes in different loci causes the initiation of adventitious root primordia in tomato stems. Our results allow the selection of different levels of adventitious rooting using molecular markers, potentially contributing to rootstock breeding strategies in grafted vegetable crops, especially in tomato. In crops vegetatively propagated as cuttings, such as fruit trees and cane fruits, orthologous genes may be useful for the selection of cultivars more amenable to propagation.


Subject(s)
Indoleacetic Acids , Solanum lycopersicum , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Plant Breeding , Signal Transduction , Phenotype , Plant Roots
2.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555756

ABSTRACT

Some of the hormone crosstalk and transcription factors (TFs) involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. In previous work, we established Solanum lycopersicum "Micro-Tom" explants without the addition of exogenous hormones as a model to investigate wound-induced de novo organ formation. The current working model indicates that cell reprogramming and founder cell activation requires spatial and temporal regulation of auxin-to-cytokinin (CK) gradients in the apical and basal regions of the hypocotyl combined with extensive metabolic reprogramming of some cells in the apical region. In this work, we extended our transcriptomic analysis to identify some of the gene regulatory networks involved in wound-induced organ regeneration in tomato. Our results highlight a functional conservation of key TF modules whose function is conserved during de novo organ formation in plants, which will serve as a valuable resource for future studies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Hypocotyl/genetics , Hypocotyl/metabolism , Solanum lycopersicum/genetics , Gene Regulatory Networks , Arabidopsis Proteins/genetics , Plant Roots/metabolism , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Plants/metabolism , Gene Expression Regulation, Plant , Plant Shoots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...