Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
3.
Nature ; 612(7941): 795-801, 2022 12.
Article in English | MEDLINE | ID: mdl-36517601

ABSTRACT

The sodium/iodide symporter (NIS) is the essential plasma membrane protein that mediates active iodide (I-) transport into the thyroid gland, the first step in the biosynthesis of the thyroid hormones-the master regulators of intermediary metabolism. NIS couples the inward translocation of I- against its electrochemical gradient to the inward transport of Na+ down its electrochemical gradient1,2. For nearly 50 years before its molecular identification3, NIS was the molecule at the centre of the single most effective internal radiation cancer therapy: radioiodide (131I-) treatment for thyroid cancer2. Mutations in NIS cause congenital hypothyroidism, which must be treated immediately after birth to prevent stunted growth and cognitive deficiency2. Here we report three structures of rat NIS, determined by single-particle cryo-electron microscopy: one with no substrates bound; one with two Na+ and one I- bound; and one with one Na+ and the oxyanion perrhenate bound. Structural analyses, functional characterization and computational studies show the substrate-binding sites and key residues for transport activity. Our results yield insights into how NIS selects, couples and translocates anions-thereby establishing a framework for understanding NIS function-and how it transports different substrates with different stoichiometries and releases substrates from its substrate-binding cavity into the cytosol.


Subject(s)
Iodides , Sodium , Symporters , Animals , Rats , Cryoelectron Microscopy , Iodides/metabolism , Sodium/metabolism , Symporters/chemistry , Symporters/metabolism , Symporters/ultrastructure , Binding Sites , Substrate Specificity , Ion Transport
4.
Biology (Basel) ; 11(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36358310

ABSTRACT

Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Immunotherapy for patients with ATC remains challenging. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. Consequently, the development of new therapies targeting immune checkpoints in TAMs is considered a promising therapeutic approach for ATC. We have previously shown that soluble factors secreted by ATC cells induced pro-tumor M2-like polarization of human monocytes by upregulating the levels of the inhibitory receptor TIM3. Here, we extended our observations on ATC-cell-induced xenograft tumors. We observed a large number of immune cells infiltrating the ATC xenograft tumors. Significantly, 24-28% of CD45+ immune cells were macrophages (CD11b+ F4/80+). We further showed that 40% of macrophages were polarized toward a M2-like phenotype, as assessed by CD206 expression and by a significant increase in the Arg1/iNOS (M2/M1) ratio. Additionally, we found that ATC xenograft tumors had levels of TIM3 expression when determined by RT-PCR and immunofluorescence assays. Interestingly, we detected the expression of TIM3 in macrophages in ATC tumors by flow cytometry assays. Furthermore, TIM3 expression correlated with macrophage marker expression in human ATC. Our studies show that TIM3 is a newly identified immune checkpoint in macrophages. Since TIM3 is known as a negative immune regulator, it should be considered as a promising immunotherapeutic target for ATC.

5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012511

ABSTRACT

Congenital iodide transport defect is an uncommon autosomal recessive disorder caused by loss-of-function variants in the sodium iodide symporter (NIS)-coding SLC5A5 gene and leading to dyshormonogenic congenital hypothyroidism. Here, we conducted a targeted next-generation sequencing assessment of congenital hypothyroidism-causative genes in a cohort of nine unrelated pediatric patients suspected of having a congenital iodide transport defect based on the absence of 99mTc-pertechnetate accumulation in a eutopic thyroid gland. Although, unexpectedly, we could not detect pathogenic SLC5A5 gene variants, we identified two novel compound heterozygous TG gene variants (p.Q29* and c.177-2A>C), three novel heterozygous TG gene variants (p.F1542Vfs*20, p.Y2563C, and p.S523P), and a novel heterozygous DUOX2 gene variant (p.E1496Dfs*51). Splicing minigene reporter-based in vitro assays revealed that the variant c.177-2A>C affected normal TG pre-mRNA splicing, leading to the frameshift variant p.T59Sfs*17. The frameshift TG variants p.T59Sfs*17 and p.F1542Vfs*20, but not the DUOX2 variant p.E1496Dfs*51, were predicted to undergo nonsense-mediated decay. Moreover, functional in vitro expression assays revealed that the variant p.Y2563C reduced the secretion of the TG protein. Our investigation revealed unexpected findings regarding the genetics of congenital iodide transport defects, supporting the existence of yet to be discovered mechanisms involved in thyroid hormonogenesis.


Subject(s)
Congenital Hypothyroidism , Thyroglobulin , Child , Congenital Hypothyroidism/genetics , Dual Oxidases/genetics , High-Throughput Nucleotide Sequencing , Humans , Iodides/metabolism , Mutation , Thyroglobulin/genetics
6.
Front Endocrinol (Lausanne) ; 13: 868891, 2022.
Article in English | MEDLINE | ID: mdl-35600585

ABSTRACT

Background: Congenital iodide transport defect (ITD) is an uncommon cause of dyshormonogenic congenital hypothyroidism characterized by the absence of active iodide accumulation in the thyroid gland. ITD is an autosomal recessive disorder caused by loss-of-function variants in the sodium/iodide symporter (NIS)-coding SLC5A5 gene. Objective: We aimed to identify, and if so to functionally characterize, novel ITD-causing SLC5A5 gene variants in a cohort of five unrelated pediatric patients diagnosed with dyshormonogenic congenital hypothyroidism with minimal to absent 99mTc-pertechnetate accumulation in the thyroid gland. Methods: The coding region of the SLC5A5 gene was sequenced using Sanger sequencing. In silico analysis and functional in vitro characterization of a novel synonymous variant were performed. Results: Sanger sequencing revealed a novel homozygous synonymous SLC5A5 gene variant (c.1326A>C in exon 11). In silico analysis revealed that the c.1326A>C variant is potentially deleterious for NIS pre-mRNA splicing. The c.1326A>C variant was predicted to lie within a putative exonic splicing enhancer reducing the binding of splicing regulatory trans-acting protein SRSF5. Splicing minigene reporter assay revealed that c.1326A>C causes exon 11 or exon 11 and 12 skipping during NIS pre-mRNA splicing leading to the NIS pathogenic variants p.G415_P443del and p.G415Lfs*32, respectively. Significantly, the frameshift variant p.G415Lfs*32 is predicted to be subjected to degradation by nonsense-mediated decay. Conclusions: We identified the first exonic synonymous SLC5A5 gene variant causing aberrant NIS pre-mRNA splicing, thus expanding the mutational landscape of the SLC5A5 gene leading to dyshormonogenic congenital hypothyroidism.


Subject(s)
Congenital Hypothyroidism , Symporters , Child , Congenital Hypothyroidism/genetics , Exons , Humans , Iodides/metabolism , RNA Precursors , Symporters/genetics
7.
Cells ; 11(8)2022 04 13.
Article in English | MEDLINE | ID: mdl-35455992

ABSTRACT

The transcription factor CREB3L1 is expressed in a wide variety of tissues including cartilage, pancreas, and bone. It is located in the endoplasmic reticulum and upon stimulation is transported to the Golgi where is proteolytically cleaved. Then, the N-terminal domain translocates to the nucleus to activate gene expression. In thyroid follicular cells, CREB3L1 is a downstream effector of thyrotropin (TSH), promoting the expression of proteins of the secretory pathway along with an expansion of the Golgi volume. Here, we analyzed the role of CREB3L1 as a TSH-dependent transcriptional regulator of the expression of the sodium/iodide symporter (NIS), a major thyroid protein that mediates iodide uptake. We show that overexpression and inhibition of CREB3L1 induce an increase and decrease in the NIS protein and mRNA levels, respectively. This, in turn, impacts on NIS-mediated iodide uptake. Furthermore, CREB3L1 knockdown hampers the increase the TSH-induced NIS expression levels. Finally, the ability of CREB3L1 to regulate the promoter activity of the NIS-coding gene (Slc5a5) was confirmed. Taken together, our findings highlight the role of CREB3L1 in maintaining the homeostasis of thyroid follicular cells, regulating the adaptation of the secretory pathway as well as the synthesis of thyroid-specific proteins in response to TSH stimulation.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Symporters , Thyroid Epithelial Cells , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Rats , Symporters/genetics , Symporters/metabolism , Thyroid Epithelial Cells/metabolism , Thyrotropin/metabolism , Thyrotropin/pharmacology
8.
Thyroid ; 32(1): 19-27, 2022 01.
Article in English | MEDLINE | ID: mdl-34726525

ABSTRACT

Background: The sodium/iodide symporter (NIS) mediates active iodide accumulation in the thyroid follicular cell. Autosomal recessive iodide transport defect (ITD)-causing loss-of-function NIS variants lead to dyshormonogenic congenital hypothyroidism due to deficient iodide accumulation for thyroid hormonogenesis. Here, we aimed to identify, and if so to functionally characterize, novel ITD-causing NIS pathogenic variants in a patient diagnosed with severe dyshormonogenic congenital hypothyroidism due to a defect in iodide accumulation in the thyroid follicular cell, as suggested by nondetectable radioiodide accumulation in a normally located thyroid gland, as well as in salivary glands. Methods: The proposita NIS-coding SLC5A5 gene was sequenced using Sanger sequencing. In silico analysis and functional in vitro characterization of the novel NIS variants were performed. Results: Sanger sequencing revealed novel compound heterozygous SLC5A5 gene variants (c.970-3C>A and c.1106A>T, p.D369V). In silico analysis suggested that c.970-3C>A disrupts the canonical splice acceptor site located in intron 7. Splicing minigene reporter assay revealed that c.970-3C>A causes exon 8 skipping during NIS pre-mRNA splicing leading to the NIS pathogenic variant p.Y324Hfs*148. Moreover, in silico analysis indicated p.D369V as pathogenic. Functional in vitro studies demonstrated that p.D369V NIS does not mediate iodide accumulation, as p.D369V causes NIS to be retained in the endoplasmic reticulum. Mechanistically, we propose an intramolecular ionic interaction involving the ß carboxyl group of D369 and the guanidinium group of R130, located in transmembrane segment 4. Of note, an Asp residue at position 369-which is highly conserved in SLC5A family members-is required for functional NIS expression at the plasma membrane. Conclusions: We uncovered a critical intramolecular interaction between R130 and D369 required for NIS maturation and plasma membrane expression. Moreover, we identified the first intronic variant causing aberrant NIS pre-mRNA splicing, thus expanding the mutational landscape in the SLC5A5 gene leading to dyshormonogenic congenital hypothyroidism.


Subject(s)
Cell Membrane/drug effects , Congenital Hypothyroidism/drug therapy , Symporters/drug effects , Cell Membrane/physiology , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/metabolism , Humans , Thyroid Gland/metabolism
9.
Cancers (Basel) ; 13(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34638305

ABSTRACT

Anaplastic thyroid cancer (ATC) is a highly aggressive type of thyroid cancer (TC). Currently, no effective target treatments are available that can improve overall survival, with ATC representing a major clinical challenge because of its remarkable lethality. Tumor-associated macrophages (TAMs) are the most evident cells in ATCs, and their high density is correlated with a poor prognosis. However, the mechanisms of how TAMs promote ATC progression remain poorly characterized. Here, we demonstrated that the treatment of human monocytes (THP-1 cells) with ATC cell-derived conditioned media (CM) promoted macrophage polarization, showing high levels of M2 markers. Furthermore, we found that STAT3 was activated, and this was correlated with an increased expression and secretion of the inflammatory cytokine interleukin-6. Remarkably, the M2-like macrophages obtained revealed tumor-promoting activity. A cytokine array analysis demonstrated that M2-like macrophage-derived CM contained high levels of TIM3, which is an important immune regulatory molecule. Consistently, TIM3 expression was up-regulated in THP-1 cells cultured with ATC cell-derived CM. Moreover, TIM3 blockade significantly reversed the polarization of THP-1 cells induced by ATC cell-secreted soluble factors. We validated the clinical significance of the TIM3 in human TC by analyzing public datasets and found that the expression of TIM3 and its ligand galectin 9 was significantly higher in human TC tissue samples than in normal thyroid tissues. Taken together, our findings identified a new mechanism by which TIM3 induces tumor-promoting M2-like macrophage polarization in TC. Furthermore, TIM3 interference might be a potential tool for treatment of patients with ATC.

10.
Thyroid ; 31(12): 1776-1785, 2021 12.
Article in English | MEDLINE | ID: mdl-34514854

ABSTRACT

Background: Iodide transport defect is an uncommon cause of dyshormonogenic congenital hypothyroidism due to homozygous or compound heterozygous pathogenic variants in the SLC5A5 gene, which encodes the sodium/iodide symporter (NIS), causing deficient iodide accumulation in thyroid follicular cells, thus impairing thyroid hormonogenesis. Methods:SLC5A5 gene variants were compiled from public databases and research articles exploring the molecular bases of congenital hypothyroidism. Using a dataset of 198 missense NIS variants classified as either benign or pathogenic, we developed and validated a machine learning-based NIS-specific variant classifier to predict the impact of missense NIS variants. Results: We generated a manually curated dataset containing 7793 unique SLC5A5 variants. As most databases compiled exome sequencing data, variant mapping revealed an increased density of variants in SLC5A5 coding exons. Based on allele frequency (AF) analysis, we established an AF threshold of 1:10,000 above which a variant should be considered benign. Most pathogenic NIS variants were located in the protein-coding region, as most patients were genetically diagnosed by using a candidate gene strategy limited to this region. Significantly, we evidenced that 94.5% of missense NIS variants were classified as of uncertain significance. Therefore, we developed an NIS-specific variant classifier to improve the prediction of pathogenicity of missense variants. Our classifier predicted the clinical outcome of missense variants with high accuracy (90%), outperforming state-of-the-art pathogenicity predictors, such as REVEL, PolyPhen-2, and SIFT. Based on the excellent performance of our classifier, we predicted the mutational landscape of NIS. The analysis of the mutational landscape revealed that most missense variants located in transmembrane segments are frequently pathogenic. Moreover, we predicted that ∼28% of all single-nucleotide variants that could cause missense NIS variants are pathogenic, thus putatively leading to congenital hypothyroidism if present in homozygous or compound heterozygous state. Conclusions: We reported the first NIS-specific variant classifier aiming at improving the interpretation of missense NIS variants in clinical practice. Deciphering the mutational landscape for every protein involved in thyroid hormonogenesis is a relevant task for a deep understanding of the molecular mechanisms causing dyshormonogenic congenital hypothyroidism.


Subject(s)
Congenital Hypothyroidism/genetics , Mutation, Missense , Symporters/genetics , Datasets as Topic , Exons , Humans , Machine Learning
11.
FASEB J ; 35(8): e21681, 2021 08.
Article in English | MEDLINE | ID: mdl-34196428

ABSTRACT

The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.


Subject(s)
Membrane Proteins/metabolism , Symporters/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Membrane/metabolism , Codon, Nonsense , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/metabolism , Conserved Sequence , Dogs , Endosomes/metabolism , HEK293 Cells , Humans , Lysosomes/metabolism , Madin Darby Canine Kidney Cells , Membrane Proteins/chemistry , Membrane Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , PDZ Domains/genetics , Protein Structure, Secondary , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Symporters/chemistry , Symporters/genetics , Thyroid Gland/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics
12.
J Clin Endocrinol Metab ; 106(7): 1867-1881, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33912899

ABSTRACT

CONTEXT: Iodide transport defect (ITD) (Online Mendelian Inheritance in Man No. 274400) is an uncommon cause of dyshormonogenic congenital hypothyroidism due to loss-of-function variants in the SLC5A5 gene, which encodes the sodium/iodide symporter (NIS), causing deficient iodide accumulation in thyroid follicular cells. OBJECTIVE: This work aims to determine the molecular basis of a patient's ITD clinical phenotype. METHODS: The propositus was diagnosed with dyshormonogenic congenital hypothyroidism with minimal 99mTc-pertechnetate accumulation in a eutopic thyroid gland. The propositus SLC5A5 gene was sequenced. Functional in vitro characterization of the novel NIS variant was performed. RESULTS: Sanger sequencing revealed a novel homozygous missense p.G561E NIS variant. Mechanistically, the G561E substitution reduces iodide uptake, because targeting of G561E NIS to the plasma membrane is reduced. Biochemical analyses revealed that G561E impairs the recognition of an adjacent tryptophan-acidic motif by the kinesin-1 subunit kinesin light chain 2 (KLC2), interfering with NIS maturation beyond the endoplasmic reticulum, and reducing iodide accumulation. Structural bioinformatic analysis suggests that G561E shifts the equilibrium of the unstructured tryptophan-acidic motif toward a more structured conformation unrecognizable to KLC2. Consistently, knockdown of Klc2 causes defective NIS maturation and consequently decreases iodide accumulation in rat thyroid cells. Morpholino knockdown of klc2 reduces thyroid hormone synthesis in zebrafish larvae leading to a hypothyroid state as revealed by expression profiling of key genes related to the hypothalamic-pituitary-thyroid axis. CONCLUSION: We report a novel NIS pathogenic variant associated with dyshormonogenic congenital hypothyroidism. Detailed molecular characterization of G561E NIS uncovered the significance of KLC2 in thyroid physiology.


Subject(s)
Congenital Hypothyroidism/genetics , Metabolism, Inborn Errors/genetics , Microtubule-Associated Proteins/metabolism , Symporters/genetics , Thyroid Hormones/metabolism , Animals , Humans , Infant, Newborn , Iodides/metabolism , Kinesins , Male , Mutation, Missense , Phenotype , Rats , Thyroid Gland/metabolism
13.
Thyroid ; 31(2): 299-314, 2021 02.
Article in English | MEDLINE | ID: mdl-32935630

ABSTRACT

Background: The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor is a key regulator of cell survival, proliferation, and gene expression. Although activation of NF-κB signaling in thyroid follicular cells after thyrotropin (TSH) receptor (TSHR) engagement has been reported, the downstream signaling leading to NF-κB activation remains unexplored. Here, we sought to elucidate the mechanisms that regulate NF-κB signaling activation in response to TSH stimulation. Methods: Fisher rat-derived thyroid cell lines and primary cultures of NF-κB essential modulator (NEMO)-deficient mice thyrocytes were used as models. Signaling pathways leading to the activation of NF-κB were investigated by using chemical inhibitors and phospho-specific antibodies. Luciferase reporter gene assays and site-directed mutagenesis were used to monitor NF-κB-dependent gene transcriptional activity and the expression of thyroid differentiation markers was assessed by reverse transcription quantitative polymerase chain reaction and Western blot, respectively. Chromatin immunoprecipitation (ChIP) was carried out to investigate NF-κB subunit p65 DNA binding, and small interfering RNA (siRNA)-mediated gene knockdown approaches were used for studying gene function. Results: Using thyroid cell lines, we observed that TSH treatment leads to protein kinase C (PKC)-mediated canonical NF-κB p65 subunit nuclear expression. Moreover, TSH stimulation phosphorylated the kinase TAK-1, and its knockdown abolished TSH-induced NF-κB transcriptional activity. TSH induced the transcriptional activity of the NF-κB subunit p65 in a protein kinase A (PKA)-dependent phosphorylation at Ser-276. In addition, p65 phosphorylation at Ser-276 induced acetyl transferase p300 recruitment, leading to its acetylation on Lys-310 and thereby enhancing its transcriptional activity. Evaluation of the role played by NF-κB in thyroid physiology demonstrated that the canonical NF-κB inhibitor BAY 11-7082 reduced TSH-induced expression of thyroid differentiation markers. The involvement of NF-κB signaling in thyroid physiology was confirmed by assessing the TSH-induced gene expression in primary cultures of NEMO-deficient mice thyrocytes. ChIP and the knockdown experiments revealed that p65 is a nuclear effector of TSH actions, inducing the transcripcional expression of thyroid differentiation markers. Conclusions: Taken together, our results point to NF-κB being a pivotal mediator in the TSH-induced thyroid follicular cell differentiation, a relevant finding with potential physiological and pathophysiological implications.


Subject(s)
Cell Differentiation/drug effects , Thyroid Gland/drug effects , Thyrotropin/pharmacology , Transcription Factor RelA/metabolism , Acetylation , Animals , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , Mice, Knockout , Phosphorylation , Protein Kinase C/metabolism , Rats, Inbred F344 , Signal Transduction , Thyroid Gland/metabolism , Transcription Factor RelA/genetics , p300-CBP Transcription Factors/metabolism
14.
Int J Pharm ; 591: 119985, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33069891

ABSTRACT

Androgens play a central role in homeostatic and pathological processes of the prostate gland. At the cellular level, testosterone activates both the genomic signaling pathway, through the intracellular androgen receptor (AR), and membrane-initiated androgen signaling (MIAS), by plasma membrane receptors. We have previously shown that the activation of MIAS induces uncontrolled proliferation and fails to stimulate the beneficial immunomodulatory effects of testosterone in prostatic cells, becoming necessary to investigate if genomic signaling mediates homeostatic effects of testosterone. However, the lack of specific modulators for genomic androgen signaling has delayed the understanding of this mechanism. In this article, we demonstrate that monosialoganglioside (GM1) micelles are capable of delivering testosterone into the cytoplasm to specifically activate genomic signaling. Stimulation with testosterone-loaded GM1 micelles led to the activation of androgen response element (ARE)-regulated genes in vitro as well as to the recovery of normal prostate size and histology after castration in mice. In addition, these micelles avoided MIAS, as demonstrated by the absence of rapid signaling pathway activation and the inability to induce uncontrolled cell proliferation. In conclusion, our results validate a novel tool for the specific activation of genomic androgen signaling and demonstrate the importance of selective pathway activation in androgen-mediated proliferation.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Androgens , Animals , G(M1) Ganglioside , Genomics , Humans , Male , Mice , Micelles , Receptors, Androgen/genetics , Signal Transduction , Testosterone
15.
PLoS One ; 15(5): e0226233, 2020.
Article in English | MEDLINE | ID: mdl-32379832

ABSTRACT

Allergic asthma is the most common phenotype of the pathology, having an early-onset in childhood and producing a Th2-driven airways remodeling process that leads to symptoms and pathophysiological changes. The avoidance of aeroallergen exposure in early life has been shown to prevent asthma, but without repeated success and with the underlying preventive mechanisms at the beginning of asthma far to be fully recognized. In the present study, we aimed to evaluate if neonatal LPS-induced boost in epithelial host defenses contribute to prevent OVA-induced asthma in adult mice. To this, we focused on the response of bronchiolar club cells (CC), which are highly specialized in maintaining the epithelial homeostasis in the lung. In these cells, neonatal LPS administration increased the expression of TLR4 and TNFα, as well as the immunodulatory/antiallergic proteins: club cell secretory protein (CCSP) and surfactant protein D (SP-D). LPS also prevented mucous metaplasia of club cells and reduced the epidermal growth factor receptor (EGFR)-dependent mucin overproduction, with mice displaying normal breathing patterns after OVA challenge. Furthermore, the overexpression of the epithelial Th2-related molecule TSLP was blunted, and normal TSLP and IL-4 levels were found in the bronchoalveolar lavage. A lower eosinophilia was detected in LPS-pretreated mice, along with an increase in phagocytes and regulatory cells (CD4+CD25+FOXP3+ and CD4+IL-10+), together with higher levels of IL-12 and TNFα. In conclusion, our study demonstrates stable asthma-preventive epithelial effects promoted by neonatal LPS stimulation, leading to the presence of regulatory cells in the lung. These anti-allergic dynamic mechanisms would be overlaid in the epithelium, favored by an adequate epidemiological environment, during the development of asthma.


Subject(s)
Asthma/immunology , Bronchioles/drug effects , Bronchioles/immunology , Cytokines/metabolism , Epithelium/immunology , Immunity, Innate , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Allergens/immunology , Animals , Animals, Newborn , Asthma/prevention & control , Disease Models, Animal , Epithelium/drug effects , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Ovalbumin/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
16.
Thyroid ; 29(7): 1023-1026, 2019 07.
Article in English | MEDLINE | ID: mdl-31115276

ABSTRACT

Iodide transport defect (ITD) is an autosomal recessive disorder caused by deficient iodide accumulation into the thyroid follicular cell. ITD is an uncommon cause of dyshormonogenetic congenital hypothyroidism that results from inactivating mutations in the sodium/iodide symporter (NIS)-coding SLC5A5 gene. NIS is a key basolateral plasma membrane glycoprotein that efficiently mediates active iodide uptake in the thyroid-constituting the first step in the biosynthesis of the iodine-containing thyroid hormones-and other tissues, including salivary glands, lactating breast, and small intestine. The proposita, a 20-day-old female born in 1992, was diagnosed with congenital hypothyroidism through newborn screening. ITD was suspected on the basis of nondetectable radioiodide accumulation in a normally located nongoitrous thyroid gland, as well as in salivary glands. Sanger sequencing revealed nonpreviously reported compound heterozygous missense SLC5A5 gene variants (c.991G>A, p.D331N and c.1.641C>A, p.S547R). Notably, these variants have not been reported in public databases (i.e., Exome Aggregation Consortium, 1000 Genomes, and Single Nucleotide Polymorphism). In silico analysis using prediction softwares (i.e., SIFT, Polyphen-2, and MutationTaster2) support the pathologic significance of p.D331N and p.S547R NIS. Moreover, functional in vitro studies demonstrate that D331N and S547R NIS severely reduce iodide uptake when the proteins are heterologously expressed in HEK-293T cells because of a pronounced impairment of D331N and S547R NIS targeting to the plasma membrane. Of note, a charged residue at position 331 and a serine residue at position 547-which are highly conserved in SLC5A family members-are required for NIS plasma membrane targeting. We report two novel missense pathogenic variants in a compound heterozygous state in the SLC5A5 gene, detected through Sanger sequencing, in a pediatric female patient with dyshormonogenic congenital hypothyroidism.


Subject(s)
Congenital Hypothyroidism/genetics , Symporters/genetics , Adolescent , Child, Preschool , Congenital Hypothyroidism/blood , Congenital Hypothyroidism/drug therapy , Female , Heterozygote , Humans , Infant, Newborn , Neonatal Screening , Thyrotropin/blood , Thyroxine/therapeutic use
17.
J Endocr Soc ; 3(1): 222-234, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30620007

ABSTRACT

Iodine is a crucial component of thyroid hormones; therefore, a key requirement for thyroid hormone biosynthesis is that iodide (I-) be actively accumulated in the thyroid follicular cell. The ability of the thyroid epithelia to concentrate I- is ultimately dependent on functional Na+/ I- symporter (NIS) expression at the plasma membrane. Underscoring the significance of NIS for thyroid physiology, loss-of-function mutations in the NIS-coding SLC5A5 gene cause an I- transport defect, resulting in dyshormonogenic congenital hypothyroidism. Moreover, I- accumulation in the thyroid cell constitutes the cornerstone for radioiodide ablation therapy for differentiated thyroid carcinoma. However, differentiated thyroid tumors often exhibit reduced (or even undetectable) I- transport compared with normal thyroid tissue, and they are diagnosed as cold nodules on thyroid scintigraphy. Paradoxically, immunohistochemistry analysis revealed that cold thyroid nodules do not express NIS or express normal, or even higher NIS levels compared with adjacent normal tissue, but NIS is frequently intracellularly retained, suggesting the presence of posttranslational abnormalities in the transport of the protein to the plasma membrane. Ultimately, a thorough comprehension of the mechanisms that regulate NIS transport to the plasma membrane would have multiple implications for radioiodide therapy, opening the possibility to identify new molecular targets to treat radioiodide-refractory thyroid tumors. Therefore, in this review, we discuss the current knowledge regarding posttranslational mechanisms that regulate NIS transport to the plasma membrane under physiological and pathological conditions affecting the thyroid follicular cell, a topic of great interest in the thyroid cancer field.

18.
Endocrinology ; 160(1): 156-168, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30496374

ABSTRACT

The Na+/iodide (I-) symporter (NIS), a glycoprotein expressed at the basolateral plasma membrane of thyroid follicular cells, mediates I- accumulation for thyroid hormonogenesis and radioiodide therapy for differentiated thyroid carcinoma. However, differentiated thyroid tumors often exhibit lower I- transport than normal thyroid tissue (or even undetectable I- transport). Paradoxically, the majority of differentiated thyroid cancers show intracellular NIS expression, suggesting abnormal targeting to the plasma membrane. Therefore, a thorough understanding of the mechanisms that regulate NIS plasma membrane transport would have multiple implications for radioiodide therapy. In this study, we show that the intracellularly facing carboxy-terminus of NIS is required for the transport of the protein to the plasma membrane. Moreover, the carboxy-terminus contains dominant basolateral information. Using internal deletions and site-directed mutagenesis at the carboxy-terminus, we identified a highly conserved monoleucine-based sorting motif that determines NIS basolateral expression. Furthermore, in clathrin adaptor protein (AP)-1B-deficient cells, NIS sorting to the basolateral plasma membrane is compromised, causing the protein to also be expressed at the apical plasma membrane. Computer simulations suggest that the AP-1B subunit σ1 recognizes the monoleucine-based sorting motif in NIS carboxy-terminus. Although the mechanisms by which NIS is intracellularly retained in thyroid cancer remain elusive, our findings may open up avenues for identifying molecular targets that can be used to treat radioiodide-refractory thyroid tumors that express NIS intracellularly.


Subject(s)
Cell Membrane/metabolism , Symporters/chemistry , Symporters/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Biological Transport , Cell Membrane/genetics , Humans , Iodides/metabolism , Leucine/genetics , Leucine/metabolism , Protein Transport , Rats , Sequence Alignment , Symporters/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
19.
Endocrinology ; 159(2): 945-956, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29194490

ABSTRACT

Androgen signaling in prostate smooth muscle cells (pSMCs) is critical for the maintenance of prostate homeostasis, the alterations of which are a central aspect in the development of pathological conditions. Testosterone can act through the classic androgen receptor (AR) in the cytoplasm, eliciting genomic signaling, or through different types of receptors located at the plasma membrane for nongenomic signaling. We aimed to find evidence of nongenomic testosterone-signaling mechanisms in pSMCs and their participation in cell proliferation, differentiation, and the modulation of the response to lipopolysaccharide. We demonstrated that pSMCs can respond to testosterone by a rapid activation of ERK1/2 and Akt. Furthermore, a pool of ARs localized at the cell surface of pSMCs is responsible for a nongenomic testosterone-induced increase in cell proliferation. Through membrane receptor stimulation, testosterone favors a muscle phenotype, indicated by an increase in smooth muscle markers. We also showed that the anti-inflammatory effects of testosterone, capable of attenuating lipopolysaccharide-induced proinflammatory actions, are promoted only by receptors located inside the cell. We postulate that testosterone might perform prohomeostatic effects through intracellular-initiated mechanisms by modulating cell proliferation and inflammation, whereas some pathological, hyperproliferative actions would be induced by membrane-initiated nongenomic signaling in pSMCs.


Subject(s)
Muscle, Smooth/drug effects , Myocytes, Smooth Muscle/drug effects , Prostate/drug effects , Receptors, Androgen/metabolism , Testosterone/pharmacology , Animals , Cells, Cultured , Male , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/metabolism , Prostate/cytology , Prostate/metabolism , Rats, Wistar , Signal Transduction/drug effects , Tissue Distribution
20.
Proc Natl Acad Sci U S A ; 113(37): E5379-88, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27562170

ABSTRACT

The sodium/iodide symporter (NIS) mediates active I(-) transport in the thyroid-the first step in thyroid hormone biosynthesis-with a 2 Na(+): 1 I(-) stoichiometry. The two Na(+) binding sites (Na1 and Na2) and the I(-) binding site interact allosterically: when Na(+) binds to a Na(+) site, the affinity of NIS for the other Na(+) and for I(-) increases significantly. In all Na(+)-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na(+) ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues-S66, D191, Q194, and Q263-are also involved in Na(+) coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I(-) These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance.


Subject(s)
Iodine/metabolism , Sodium/metabolism , Symporters/metabolism , Thyroid Gland/metabolism , Amino Acids/chemistry , Amino Acids/genetics , Binding Sites , Humans , Iodine/chemistry , Ion Transport/genetics , Ions/chemistry , Ligands , Models, Molecular , Symporters/genetics , Thyroid Gland/chemistry , Thyroid Hormones/biosynthesis , Thyroid Hormones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...