Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731983

ABSTRACT

Acne vulgaris is a prevalent skin disorder affecting many young individuals, marked by keratinization, inflammation, seborrhea, and colonization by Cutibacterium acnes (C. acnes). Ellagitannins, known for their antibacterial and anti-inflammatory properties, have not been widely studied for their anti-acne effects. Chestnut (Castanea sativa Mill., C. sativa), a rich ellagitannin source, including castalagin whose acne-related bioactivity was previously unexplored, was investigated in this study. The research assessed the effect of C. sativa leaf extract and castalagin on human keratinocytes (HaCaT) infected with C. acnes, finding that both inhibited IL-8 and IL-6 release at concentrations below 25 µg/mL. The action mechanism was linked to NF-κB inhibition, without AP-1 involvement. Furthermore, the extract displayed anti-biofilm properties and reduced CK-10 expression, indicating a potential role in mitigating inflammation, bacterial colonization, and keratosis. Castalagin's bioactivity mirrored the extract's effects, notably in IL-8 inhibition, NF-κB inhibition, and biofilm formation at low µM levels. Other polyphenols, such as flavonol glycosides identified via LC-MS, might also contribute to the extract's biological activities. This study is the first to explore ellagitannins' potential in treating acne, offering insights for developing chestnut-based anti-acne treatments pending future in vivo studies.


Subject(s)
Acne Vulgaris , Fagaceae , Hydrolyzable Tannins , Plant Extracts , Plant Leaves , Humans , Hydrolyzable Tannins/pharmacology , Fagaceae/chemistry , Acne Vulgaris/microbiology , Acne Vulgaris/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , NF-kappa B/metabolism , HaCaT Cells , Propionibacterium acnes/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Interleukin-8/metabolism
2.
J Mol Biol ; 434(17): 167663, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35659507

ABSTRACT

The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Allosteric Regulation/genetics , DNA/chemistry , Humans , Molecular Dynamics Simulation , Mutation , Neoplasms/genetics , Protein Binding , Protein Domains , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...