Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(6): e0128558, 2015.
Article in English | MEDLINE | ID: mdl-26030138

ABSTRACT

The CSB protein, a member of the SWI/SNF ATP dependent chromatin remodeling family of proteins, plays a role in a sub-pathway of nucleotide excision repair (NER) known as transcription coupled repair (TCR). CSB is frequently mutated in Cockayne syndrome group B, a segmental progeroid human autosomal recessive disease characterized by growth failure and degeneration of multiple organs. Though initially classified as a DNA repair protein, recent studies have demonstrated that the loss of CSB results in pleiotropic effects. Identification of novel proteins belonging to the CSB interactome may be useful not only for predicting the molecular basis for diverse pathological symptoms of CS-B patients but also for unraveling the functions of CSB in addition to its authentic role in DNA repair. In this study, we performed tandem affinity purification (TAP) technology coupled with mass spectrometry and co-immunoprecipitation studies to identify and characterize the proteins that potentially interact with CSB-TAP. Our approach revealed 33 proteins that were not previously known to interact with CSB. These newly identified proteins indicate potential roles for CSB in RNA metabolism involving repression and activation of transcription process and in the maintenance of chromatin dynamics and integrity.


Subject(s)
Chromatin/genetics , Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , RNA/genetics , Cell Line , DNA Repair/genetics , Humans , Immunoprecipitation/methods , Poly-ADP-Ribose Binding Proteins , Transcription, Genetic/genetics
2.
DNA Repair (Amst) ; 12(4): 293-9, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23419237

ABSTRACT

In the present study we show that a number of cancer cell lines from different tissues display dramatically increased expression of the Cockayne Syndrome group B (CSB) protein, a DNA repair factor, that has recently been shown to be involved in cell robustness. Furthermore, we demonstrated that ablation of this protein by antisense technology causes devastating effects on tumor cells through a drastic reduction of cell proliferation and massive induction of apoptosis, while non-transformed cells remain unaffected. Finally, suppression of CSB in cancer cells makes these cells hypersensitive to a variety of commonly used cancer chemotherapeutic agents. Based on these results, we conclude that cancer cells overexpress CSB protein in order to enhance their anti-apoptotic capacity. The fact that CSB suppression specifically affects only cancerous cells, without harming healthy cells, suggests that CSB may be a very attractive target for the development of new anticancer therapies.


Subject(s)
Apoptosis/genetics , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Gene Expression , HeLa Cells , Humans , MCF-7 Cells , Poly-ADP-Ribose Binding Proteins , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL
...