ABSTRACT
Studies on community composition and population structure of entomopathogenic fungi are imperative to link ecosystem functions to conservation biological control. We studied the diversity and abundance of Metarhizium spp. from soil of conventionally and organically farmed strawberry crops and from the adjacent field margins in two different climatic zones: Brazil (tropical) and Denmark (temperate), using the same isolating methods. In Brazilian strawberry soil, Metarhizium robertsii (n = 129 isolates) was the most abundant species, followed by M. humberi (n = 16); M. anisopliae (n = 6); one new taxonomically unassigned lineage Metarhizium sp. indet. 5 (n = 4); M. pingshaense (n = 1) and M. brunneum (n = 1). In Denmark, species composition was very different, with M. brunneum (n = 33) being isolated most commonly, followed by M. flavoviride (n = 6) and M. pemphigi (n = 5), described for the first time in Denmark. In total, 17 haplotypes were determined based on MzFG543igs sequences, four representing Danish isolates and 13 representing Brazilian isolates. No overall difference between the two climatic regimes was detected regarding the abundance of Metarhizium spp. in the soil in strawberry fields and the field margins. However, we found a higher Shannon's diversity index in organically managed soils, confirming a more diverse Metarhizium community than in soils of conventionally managed agroecosystems in both countries. These findings contribute to the knowledge of the indigenous diversity of Metarhizium in agricultural field margins with the potential to contribute to pest regulation in strawberry cropping systems.
Subject(s)
Fragaria , Metarhizium , Soil Microbiology , Fragaria/microbiology , Brazil , Denmark , Pest Control, BiologicalABSTRACT
BACKGROUND: Root inoculations of crop plants with beneficial fungi constitute a promising strategy for growth promotion and control of above-ground pests and diseases. Here, strawberry roots (cultivar 'Albion' and 'Pircinque') were inoculated with 25 different Brazilian entomopathogenic fungal isolates of three genera and the effects on Tetranychus urticae oviposition and plant growth were evaluated in greenhouse experiments. RESULTS: Reductions in the number of T. urticae eggs compared to control treatments were observed on both cultivars inoculated with almost all isolates. For the cultivar 'Albion', Metarhizium anisopliae (ESALQ 1604, ESALQ 1669), M. robertsii (ESALQ 1622, ESALQ 1635), Metarhizium sp. Indet. (ESALQ 1684) and Beauveria bassiana (ESALQ 3323) increased dry weight of roots and leaves, and fruit yield, while M. robertsii (ESALQ 1634), Metarhizium sp. Indet. (ESALQ 1637) and (ESALQ 1636) enhanced fruit yield and dry weight of leaves, respectively. For the cultivar 'Pircinque', M. anisopliae (ESALQ 1669) was the only isolate observed to increase dry weight of roots. CONCLUSION: The results suggest that inoculation of strawberry roots with entomopathogenic fungi may be an innovative strategy for pest management above ground. Furthermore, these inoculations may also stimulate plant growth and strawberry production, but the effects depend on fungal strains and crop cultivar. © 2019 Society of Chemical Industry.
Subject(s)
Beauveria , Fragaria , Metarhizium , Animals , Brazil , Female , Pest Control, BiologicalABSTRACT
The aim of this study was to evaluate the natural occurrence of Beauveria spp. in soil, from infections in the stink bug Piezodorus guildinii, an important pest of common bean (Phaseolus vulgaris) and as endophytes in bean plant tissue. Twelve conventional and 12 organic common bean fields in the Villa Clara province, Cuba were sampled from September 2014 to April 2015. One hundred and fifty Beauveria isolates were obtained from soil samples, bean plant parts and stink bugs. The overall frequency of occurrence of Beauveria isolates in conventional fields (8.4%) was significantly lower than that in organic fields (23.6%). Beauveria were also obtained significantly more frequently from bean roots in organic fields (15.0%) compared to bean roots in conventional fields (3.3%). DNA sequencing of the intergenic Bloc region was performed for Beauveria species identification. All isolates where characterized as Beauveria bassiana (Balsamo-Crivelli) Vuillemin, and clustered with isolates of neotropical origin previously described as AFNEO_1. The Cuban B. bassiana isolates formed five clusters in the phylogeny. Isolates of two clusters originated from all four locations, organic and conventional fields, as well as soil, plants and stink bugs. Organic fields contained isolates of all five clusters while conventional fields only harbored isolates of the two most frequent ones. Mating type PCR assays revealed that mating type distribution was skewed, with MAT1/MAT2 proportion of 146/4, indicating limited potential for recombination. The present study is the first to report of B. bassiana as a naturally occurring endophyte in common bean. Further, it shows that B. bassiana occurs naturally in diverse environments of common bean fields, and constitutes a potential reservoir of natural enemies against pest insects particularly in organic fields.