Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Pharm Sci ; 113(1): 118-130, 2024 01.
Article in English | MEDLINE | ID: mdl-37634869

ABSTRACT

In-vitro models are available in the literature for predicting the volume of distribution at steady-state (Vdss) of drugs. The mechanistic model refers to the tissue composition-based model (TCM), which includes important factors that govern Vdss such as drug physiochemistry and physiological data. The recognized TCM published by Rodgers and Rowland (TCM-RR) and a subsequent adjustment made by Simulations Plus Inc. (TCM-SP) have been shown to be generally less accurate with neutral compared to ionized drugs. Therefore, improving these models for neutral drugs becomes necessary. The objective of this study was to propose a new TCM for improving the prediction of Vdss for neutral drugs. The new TCM included two modifications of the published models (i) accentuate the effect of the blood-to-plasma ratio (BPR) that should cover permeated molecules across the biomembranes, which is lacking in these models for neutral compounds, and (ii) use a different approach to estimate the binding in tissues. The new TCM was validated with a large dataset of 202 commercial and proprietary compounds including preclinical and clinical data. All scenario datasets were predicted more accurately with the TCM-New, whereas all statistical parameters indicate that the TCM-New showed significant improvements in terms of accuracy over the TCM-RR and TCM-SP. Predictions of Vdss were frequently more accurate for the TCM-new with 83% within twofold error versus only 50% for the TCM-RR. And more than 95% of the predictions were within threefold error and patient interindividual differences can be predicted with the TCM-New, greatly exceeding the accuracy of the published models. Overall, the new TCM incorporating BPR significantly improved the Vdss predictions in animals and humans for neutral drugs, and, hence, has the potential to better support the drug discovery and facilitate the first-in-human predictions.


Subject(s)
Drug Discovery , Models, Biological , Animals , Humans , Species Specificity , Drug Evaluation, Preclinical , Protein Binding , Pharmaceutical Preparations , Pharmacokinetics
2.
Mol Pharm ; 20(12): 6197-6212, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37955627

ABSTRACT

Compound X is a weak basic drug targeting the early stages of Parkinson's disease, for which a theoretical risk assessment has indicated that elevated gastric pH conditions could potentially result in reduced plasma concentrations. Different in vitro dissolution methodologies varying in level of complexity and a physiologically based pharmacokinetic (PBPK) absorption model demonstrated that the dissolution, solubility, and intestinal absorption of compound X was indeed reduced under elevated gastric pH conditions. These observations were confirmed in a crossover pharmacokinetic study in Beagle dogs. As a result, the development of a formulation resulting in robust performance that is not sensitive to the exposed gastric pH levels is of crucial importance. The dynamic intestinal absorption MODel (Diamod), an advanced in vitro gastrointestinal transfer tool that allows to study the gastrointestinal dissolution and interconnected permeation of drugs, was selected as an in vitro tool for the formulation optimization activities given its promising predictive capacity and its capability to generate insights into the mechanisms driving formulation performance. Different pH-modifiers were screened for their potential to mitigate the pH-effect by decreasing the microenvironmental pH at the dissolution surface. Finally, an optimized formulation containing a clinically relevant dose of the drug and a functional amount of the selected pH-modifier was evaluated for its performance in the Diamod. This monolayer tablet formulation resulted in rapid gastric dissolution and supersaturation, inducing adequate intestinal supersaturation and permeation of compound X, irrespective of the gastric acidity level in the stomach. In conclusion, this study describes the holistic biopharmaceutics approach driving the development of a patient-centric formulation of compound X.


Subject(s)
Intestinal Absorption , Patient-Centered Care , Humans , Animals , Dogs , Drug Compounding , Administration, Oral , Intestinal Absorption/physiology , Solubility
3.
Clin Pharmacol Drug Dev ; 12(11): 1121-1127, 2023 11.
Article in English | MEDLINE | ID: mdl-37212183

ABSTRACT

The pharmacokinetics, metabolism, safety, and tolerability of the antiseizure medication brivaracetam (BRV) were characterized in 16 healthy elderly participants (8 men/8 women) aged 65-78 years who received a single 200-mg oral dose of BRV on day 1, followed by 200 mg twice daily from day 3 until day 12. BRV and three metabolites were determined in plasma and urine. Adverse events, vital signs, electrocardiograms, laboratory tests, general and neurological examinations, and psychometric rating scales were recorded at regular intervals. No clinically relevant changes or abnormalities were detected. The adverse events were similar to those observed in pivotal trials. Rating scales indicated transiently increased sedation and decreased alertness. BRV pharmacokinetics and metabolism were unchanged relative to younger populations. Based on our observations in this healthy elderly population receiving oral BRV 200 mg twice daily (twice the maximum recommended dose), dose reductions are not warranted relative to other, younger populations. Further investigations may be necessary in frail elderly populations aged >80 years.


Subject(s)
Anticonvulsants , Pyrrolidinones , Male , Humans , Aged , Female , Anticonvulsants/adverse effects , Treatment Outcome , Drug Therapy, Combination , Pyrrolidinones/adverse effects
4.
EJNMMI Res ; 12(1): 71, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36346513

ABSTRACT

BACKGROUND: Antiepileptic drugs, levetiracetam (LEV) and brivaracetam (BRV), bind to synaptic vesicle glycoprotein 2A (SV2A). In their anti-seizure activity, speed of brain entry may be an important factor. BRV showed faster entry into the human and non-human primate brain, based on more rapid displacement of SV2A tracer 11C-UCB-J. To extract additional information from previous human studies, we developed a nonlinear model that accounted for drug entry into the brain and binding to SV2A using brain 11C-UCB-J positron emission tomography (PET) data and the time-varying plasma drug concentration, to assess the kinetic parameter K1 (brain entry rate) of the drugs. METHOD: Displacement (LEV or BRV p.i. 60 min post-tracer injection) and post-dose scans were conducted in five healthy subjects. Blood samples were collected for measurement of drug concentration and the tracer arterial input function. Fitting of nonlinear differential equations was applied simultaneously to time-activity curves (TACs) from displacement and post-dose scans to estimate 5 parameters: K1 (drug), K1(11C-UCB-J, displacement), K1(11C-UCB-J, post-dose), free fraction of 11C-UCB-J in brain (fND(11C-UCB-J)), and distribution volume of 11C-UCB-J (VT(UCB-J)). Other parameters (KD(drug), KD(11C-UCB-J), fP(drug), fP(11C-UCB-J, displacement), fP(11C-UCB-J, post-dose), fND(drug), koff(drug), koff(11C-UCB-J)) were fixed to literature or measured values. RESULTS: The proposed model described well the TACs in all subjects; however, estimates of drug K1 were unstable in comparison with 11C-UCB-J K1 estimation. To provide a conservative estimate of the relative speed of brain entry for BRV vs. LEV, we determined a lower bound on the ratio BRV K1/LEV K1, by finding the lowest BRV K1 or highest LEV K1 that were statistically consistent with the data. Specifically, we used the F test to compare the residual sum of squares with fixed BRV K1 to that with floating BRV K1 to obtain the lowest possible BRV K1; the same analysis was performed to find the highest LEV K1. The lower bound of the ratio BRV K1/LEV K1 was ~ 7. CONCLUSIONS: Under appropriate conditions, this advanced nonlinear model can directly estimate entry rates of drugs into tissue by analysis of PET TACs. Using a conservative statistical cutoff, BRV enters the brain at least sevenfold faster than LEV.

5.
Adv Drug Deliv Rev ; 181: 114084, 2022 02.
Article in English | MEDLINE | ID: mdl-34929252

ABSTRACT

Despite much progress in regulations to improve paediatric drug development, there remains a significant need to develop better medications for children. For the design of oral dosage forms, a detailed understanding of the specific gastrointestinal (GI) conditions in children of different age categories and how they differ from GI conditions in adults is essential. Several review articles have been published addressing the ontogeny of GI characteristics, including luminal conditions in the GI tract of children. However, the data reported in most of these reviews are of limited quality because (1) information was cited from very old publications and sometimes low quality sources, (2) data gaps in the original data were filled with textbook knowledge, (3) data obtained on healthy and sick children were mixed, (4) average data obtained on groups of patients were mixed with data obtained on individual patients, and (5) results obtained using investigative techniques that may have altered the outcome of the respective studies were considered. Consequently, many of these reviews draw conclusions that may be incorrect. The aim of the present review was to provide a comprehensive and updated overview of the available original data on the ontogeny of GI luminal conditions relevant to oral drug absorption in the paediatric population. To this end, the PubMed and Web of Science metadatabases were searched for appropriate studies that examined age-related conditions in the oral cavity, esophagus, stomach, small intestine, and colon. Maturation was observed for several GI parameters, and corresponding data sets were identified for each paediatric age group. However, it also became clear that the ontogeny of several GI traits in the paediatric population is not yet known. The review article provides a robust and valuable data set for the development of paediatric in vitro and in silico biopharmaceutical tools to support the development of age-appropriate dosage forms. In addition, it provides important information on existing data gaps and should provide impetus for further systematic and well-designed in vivo studies on GI physiology in children of specific age groups in order to close existing knowledge gaps and to sustainably improve oral drug therapy in children.


Subject(s)
Gastrointestinal Absorption/physiology , Gastrointestinal Tract/metabolism , Administration, Oral , Adolescent , Age Factors , Child , Child, Preschool , Gastrointestinal Transit/physiology , Humans , Hydrogen-Ion Concentration , Infant , Infant, Newborn , Pharmacokinetics , Saliva/metabolism
6.
Br J Clin Pharmacol ; 87(3): 1378-1389, 2021 03.
Article in English | MEDLINE | ID: mdl-32822519

ABSTRACT

AIMS: To build and verify a physiologically based pharmacokinetic (PBPK) model for radiprodil in adults and link this to a pharmacodynamic (PD) receptor occupancy (RO) model derived from in vitro data. Adapt this model to the paediatric population and predict starting and escalating doses in infants based on RO. Use the model to guide individualized dosing in a clinical trial in 2- to 14-month-old children with infantile spasms. METHODS: A PBPK model for radiprodil was developed to investigate the systemic exposure of the drug after oral administration in fasted and fed adults; this was then linked to RO via a PD model. The model was then expanded to include developmental physiology and ontogeny to predict escalating doses in infants that would result in a specific RO of 20, 40 and 60% based on average unbound concentration following a twice daily (b.i.d.) dosing regimen. Dose progression in the clinical trial was based on observed concentration-time data against PBPK predictions. RESULTS: For paediatric predictions, the elimination of radiprodil, based on experimental evidence, had no ontogeny. Predicted b.i.d. doses ranged from 0.04 mg/kg for 20% RO, 0.1 mg/kg for 40% RO to 0.21 mg/kg for 60% RO. For all infants recruited in the study, observed concentration-time data following the 0.04 mg/kg and subsequent doses were within the PBPK model predicted 5th and 95th percentiles. CONCLUSION: To our knowledge, this is the first time a PBPK model linked to RO has been used to guide dose selection and escalation in the live phase of a paediatric clinical trial.


Subject(s)
Models, Biological , Administration, Oral , Adult , Child , Humans , Infant
7.
Pharm Res ; 37(9): 175, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32856111

ABSTRACT

PURPOSE: More accurate prediction of the extent of drug brain exposure in early drug discovery and understanding potential species differences could help to guide medicinal chemistry and avoid unnecessary animal studies. Hence, the aim of the current study was to validate the use of a P-gp transfected LLC-PK1 model to predict the unbound brain-to-plasma concentration ratio (Kpuu,brain) in rats and humans. METHODS: MOCK-, Mdr1a- and MDR1-transfected LLC-PK1 monolayers were applied in a transwell setup to quantify the bidirectional transport for 12 specific P-gp substrates, 48 UCB drug discovery compounds, 11 compounds with reported rat in situ brain perfusion data and 6 compounds with reported human Kpuu,brain values. The in vitro transport data were introduced in a minimal PBPK model (SIVA®) to determine the transport parameters. These parameters were combined with the differences between in vitro and in vivo passive permeability as well as P-gp expression levels (as determined by LC-MS/MS), to predict the Kpuu,brain. RESULTS: A 10-fold difference between in vitro and in vivo passive permeability was observed. Incorporation of the differences between in vitro and in vivo passive permeability and P-gp expression levels resulted in an improved prediction of rat (AAFE 2.17) and human Kpuu,brain (AAFE 2.10). CONCLUSIONS: We have succesfully validated a methodology to use a P-gp overexpressing LLC-PK1 cell line to predict both rat and human Kpuu,brain by correcting for both passive permeability and P-gp expression levels.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Plasma/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Animals , Biological Transport , Dose-Response Relationship, Drug , Drug Discovery , Humans , LLC-PK1 Cells , Male , Permeability , Predictive Value of Tests , Rats , Rats, Sprague-Dawley , Swine , Transfection
8.
Epilepsy Res ; 163: 106327, 2020 07.
Article in English | MEDLINE | ID: mdl-32361205

ABSTRACT

Brivaracetam is an antiepileptic drug (AED) indicated for the treatment of focal seizures, with improved safety and tolerability vs first-generation AEDs. Brivaracetam binds with high affinity to synaptic vesicle protein 2A in the brain, which confers its antiseizure activity. Brivaracetam is rapidly absorbed and extensively biotransformed, and exhibits linear and dose-proportional pharmacokinetics at therapeutic doses. Brivaracetam does not interact with most metabolizing enzymes and drug transporters, and therefore does not interfere with drugs that use these metabolic routes. The favorable pharmacokinetic profile of brivaracetam and lack of clinically relevant drug-drug interactions with commonly prescribed AEDs or oral contraceptives allows administration without dose adjustment, and avoids potential untoward events from decreased efficacy of an AED or oral contraceptive due to a drug-drug interaction. Few agents have been reported to affect the pharmacokinetics of brivaracetam. The strong enzyme-inducing AEDs carbamazepine, phenytoin and phenobarbital/primidone have been shown to moderately lower brivaracetam plasma concentrations, with no adjustment of brivaracetam dose needed. Dose adjustment should be considered when brivaracetam is coadministered with the more potent CYP inducer, rifampin. Additionally, caution should be used when adding or ending treatment with the strong enzyme inducer, St. John's wort. In summary, brivaracetam (50-200 mg/day) has a favorable pharmacokinetic profile and is associated with few clinically relevant drug-drug interactions.


Subject(s)
Anticonvulsants/therapeutic use , Brain/drug effects , Drug Interactions , Pyrrolidinones/pharmacology , Seizures/drug therapy , Carbamazepine/therapeutic use , Humans
9.
J Cereb Blood Flow Metab ; 40(9): 1890-1901, 2020 09.
Article in English | MEDLINE | ID: mdl-31570041

ABSTRACT

11C-UCB-J is a positron emission tomography (PET) radioligand that has been used in humans for synaptic vesicle glycoprotein 2A (SV2A) imaging and as a potential synaptic density marker. The centrum semiovale (CS) is a proposed reference region for noninvasive quantification of 11C-UCB-J, due to negligible concentrations of SV2A in this region in baboon brain assessed by in vitro methods. However, in displacement scans with SV2A-specific drug levetiracetam in humans, a decrease in 11C-UCB-J concentration was observed in the CS, consistent with some degree of specific binding. The current study aims to validate the CS as a reference region by (1) optimizing CS region of interest (ROI) to minimize spill-in from gray matter with high radioactivity concentrations; (2) investigating convergence of CS ROI values using ordered subset expectation maximization (OS-EM) reconstruction, and (3) comparing baseline CS volume of distribution (VT) to nondisplaceable uptake in gray matter, VND. Improving ROI definition and increasing OS-EM iterations during reconstruction decreased the difference between CS VT and VND. However, even with these corrections, CS VT overestimated VND by ∼35-40%. These measures showed significant correlation, suggesting that, though biased, the CS may be a useful estimate of nondisplaceable uptake, allowing for noninvasive quantification for SV2A PET.


Subject(s)
White Matter/diagnostic imaging , Adult , Aged , Algorithms , Brain/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Levetiracetam/pharmacology , Male , Membrane Glycoproteins/metabolism , Middle Aged , Nerve Tissue Proteins/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Reference Standards , White Matter/drug effects
10.
ChemMedChem ; 15(7): 585-592, 2020 04 03.
Article in English | MEDLINE | ID: mdl-31797561

ABSTRACT

Nonspecific binding (NSB) is a key parameter in optimizing PET imaging tracers. We compared the ability to predict NSB of three available methods: LIMBA, rat fu,brain , and CHI(IAM). Even though NSB is often associated with lipophilicity, we observed that logD does not correlate with any of these assays, clearly indicating that lipophilicity, while influencing NSB, is insufficient to predict it. A cross-comparison of the methods showed that all three correlate and are useful predictors of NSB. The three assays, however, rank the molecules slightly differently, illustrating the challenge of comparing molecules within a narrow chemical space. We also noted that CHI(IAM) values more effectively predict VNS , a measure of in vivo NSB in the human brain. CHI(IAM) measurements might be a closer model of the actual physicochemical interaction between PET tracer candidates and cell membranes, and seems to be the method of choice for the optimization of in vivo NSB.


Subject(s)
Brain/metabolism , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , Animals , Humans , Hydrophobic and Hydrophilic Interactions , Radiopharmaceuticals/chemistry , Rats
11.
Eur J Pharm Sci ; 142: 105122, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31678424

ABSTRACT

Seletalisib is an orally bioavailable selective inhibitor of phosphoinositide 3-kinase delta (PI3Kδ) in clinical development for the treatment of immune-mediated inflammatory diseases. The present study investigated the role of P-gp in seletalisib disposition, especially brain distribution, and the associated risks of interactions. Seletalisib was found to be actively transported by rodent and human P-gp in vitro (transfected LLC-PK1 cells; Km of ca. 20 µM), with minimal or no affinity for the other tested transporters. A distribution study in knockout rats (single oral dosing at 750 mg kg-1) showed that P-gp restricts the brain disposition of seletalisib while having minimal effect on its intestinal absorption. Restricted brain penetration was also observed in cynomolgus monkeys (single oral dosing at 30 mg kg-1) using brain microdialysis and cerebrospinal fluid sampling (Kp,uu of 0.09 and 0.24, respectively). These findings opened the question of potential pharmacokinetic interaction between seletalisib and P-gp inhibitors. In vitro, CsA inhibited the active transport of seletalisib with an IC50 of 0.13 µM. In rats, co-administration of high doses of CsA (bolus iv followed by continuous infusion) increased the brain distribution of seletalisib (single oral dosing at 5 mg kg-1). The observed data were found aligned with those predicted by in vitro-in vivo extrapolation. Based on the same extrapolation method combined with literature data, only very few P-gp inhibitors (i.e. CsA, quinine, quinidine) were predicted to increase the brain disposition of seletalisib in the clinical setting (maximal 3-fold changes).


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/metabolism , Drug Interactions/physiology , Pyridines/metabolism , Quinolines/metabolism , Animals , Biological Transport/physiology , Enzyme Inhibitors/metabolism , Female , Humans , LLC-PK1 Cells , Male , Phosphatidylinositol 3-Kinases/metabolism , Quinidine/metabolism , Quinine/metabolism , Rats , Rats, Wistar , Swine
12.
AAPS J ; 21(4): 67, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31140038

ABSTRACT

Available data on human brain P-glycoprotein ontogeny during infancy and childhood are limited. This review discusses the current body of data relating to maturation of human brain P-glycoprotein including transporter expression levels in post-mortem human brain samples, in vivo transporter activity using probe substrates, surrogate marker endpoints, and extrapolations from animal models. Overall, the data tend to confirm that human brain P-glycoprotein activity keeps developing after birth, although with a developmental time frame that remains unclear. This knowledge gap is a concern given the critical role of brain P-glycoprotein in drug safety and efficacy, and the vulnerable nature of the pediatric population. Future research could include the measurement of brain P-glycoprotein activity across age groups using positron emission tomography or central pharmacodynamic responses. For now, caution is advised when extrapolating adult data to children aged younger than 2 years for drugs with P-glycoprotein-dependent central nervous system activity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Aging/metabolism , Brain/metabolism , Drug-Related Side Effects and Adverse Reactions/metabolism , Pharmaceutical Preparations/metabolism , Animals , Brain/growth & development , Child , Humans , Organ Specificity , Pharmaceutical Preparations/cerebrospinal fluid
13.
Epilepsia ; 60(5): 958-967, 2019 05.
Article in English | MEDLINE | ID: mdl-30924924

ABSTRACT

OBJECTIVE: Brivaracetam (BRV) and levetiracetam (LEV) are antiepileptic drugs that bind synaptic vesicle glycoprotein 2A (SV2A). In vitro and in vivo animal studies suggest faster brain penetration and SV2A occupancy (SO) after dosing with BRV than LEV. We evaluated human brain penetration and SO time course of BRV and LEV at therapeutically relevant doses using the SV2A positron emission tomography (PET) tracer 11 C-UCB-J (EP0074; NCT02602860). METHODS: Healthy volunteers were recruited into three cohorts. Cohort 1 (n = 4) was examined with PET at baseline and during displacement after intravenous BRV (100 mg) or LEV (1500 mg). Cohort 2 (n = 5) was studied during displacement and 4 hours postdose (BRV 50-200 mg or LEV 1500 mg). Cohort 3 (n = 4) was examined at baseline and steady state after 4 days of twice-daily oral dosing of BRV (50-100 mg) and 4 hours postdose of LEV (250-600 mg). Half-time of 11 C-UCB-J signal change was computed from displacement measurements. Half-saturation concentrations (IC50 ) were determined from calculated SO. RESULTS: Observed tracer displacement half-times were 18 ± 6 minutes for BRV (100 mg, n = 4), 9.7 and 10.1 minutes for BRV (200 mg, n = 2), and 28 ± 6 minutes for LEV (1500 mg, n = 6). Estimated corrected half-times were 8 minutes shorter. The SO was 66%-70% for 100 mg intravenous BRV, 84%-85% for 200 mg intravenous BRV, and 78%-84% for intravenous 1500 mg LEV. The IC50 of BRV (0.46 µg/mL) was 8.7-fold lower than of LEV (4.02 µg/mL). BRV data fitted a single SO versus plasma concentration relationship. Steady state SO for 100 mg BRV was 86%-87% (peak) and 76%-82% (trough). SIGNIFICANCE: BRV achieves high SO more rapidly than LEV when intravenously administered at therapeutic doses. Thus, BRV may have utility in treating acute seizures; further clinical studies are needed for confirmation.


Subject(s)
Anticonvulsants/pharmacokinetics , Levetiracetam/pharmacokinetics , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neuroimaging/methods , Positron-Emission Tomography , Pyrrolidinones/pharmacokinetics , Administration, Oral , Anticonvulsants/administration & dosage , Anticonvulsants/blood , Anticonvulsants/metabolism , Carbon Radioisotopes , Female , Healthy Volunteers , Humans , Inhibitory Concentration 50 , Injections, Intravenous , Levetiracetam/administration & dosage , Levetiracetam/blood , Levetiracetam/metabolism , Magnetic Resonance Imaging , Male , Protein Binding , Pyrrolidinones/administration & dosage , Pyrrolidinones/blood , Pyrrolidinones/metabolism
14.
Article in English | MEDLINE | ID: mdl-29665472

ABSTRACT

Brivaracetam (BRV) is a new high affinity synaptic vesicle protein 2A ligand recently approved for adults with partial-onset seizures. As a support to in vitro metabolism assays, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method coupled to off-line solid phase extraction (SPE) was developed to quantify BRV acid metabolites, that is, BRV-AC (carboxylic derivative derived from BRV hydrolysis) and BRV-OHAC (corresponding to hydroxylated BRV-AC). The method was validated for various incubates (liver and kidney tissue homogenates and blood, all from humans) and applied to in vitro metabolism assays. The analytes were isolated from buffered samples using ISOLUTE C8 96-well SPE plates. Chromatographic separation was achieved on a Waters Atlantis T3 C18 analytical column (2.1 mm × 50 mm, 5 µm) with detection accomplished using a Waters Premier tandem mass spectrometer in positive ion electrospray and multiple reaction monitoring (MRM) mode. The standard curves, which ranged from 1.00 to 200 ng/mL for BRV-AC, BRV-OHAC, were fitted to a 1/x2 weighted linear regression model. The intra-assay precision and inter-assay precision (expressed as coefficient of variation -%CV) were <8.5%, and the assay accuracy (deviation - %Dev) was within ±7.1% for the different matrices. This accurate, precise, and selective SPE/LC-MS/MS method has been successfully applied to in vitro assays aimed at characterizing the kinetics of BRV hydrolysis. BRV was found to be a better substrate for hydrolysis than its hydroxylated metabolite BRV-OH. BRV hydrolysis was detected in blood, liver and kidneys, demonstrating the broad distribution of the enzyme catalyzing the reaction.


Subject(s)
Chromatography, Liquid/methods , Pyrrolidinones/analysis , Pyrrolidinones/metabolism , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Humans , Hydrolysis , Kidney/cytology , Kidney/metabolism , Limit of Detection , Linear Models , Microsomes, Liver/metabolism , Pyrrolidinones/chemistry , Pyrrolidinones/isolation & purification , Reproducibility of Results
15.
PLoS One ; 12(8): e0182887, 2017.
Article in English | MEDLINE | ID: mdl-28854243

ABSTRACT

OBJECTIVE: Investigate a combination of two clinically tested drugs, the NR2B antagonist Radiprodil and the A2A antagonist Tozadenant in the MPTP-treated marmoset model of Parkinson's Disease (PD). BACKGROUND: In PD, there remains a need for the development of non-dopaminergic drugs to effectively treat the motor symptoms without the induction of L-Dopa-induced motor complications. METHODS: Clinically relevant doses of Radiprodil and Tozadenant were given both alone and in combination without the addition of L-Dopa, and the antiparkinsonian efficacy of the treatments was assessed in a primate model of PD. RESULTS: When compared to the drugs tested alone, the drug combination led to a significant increase of motor activity and an improvement of motor disability in MPTP-treated marmosets. In addition, the motor restoration brought about by the combination was almost completely devoid of dyskinesia. Interestingly, treated primates were not overstimulated, but were able to move normally when motivated by the exploration of novel objects. CONCLUSION: We have demonstrated in a primate model that, the "Radiprodil/Tozadenant" combination significantly improves motor activity, extending previous results obtained in unilaterally lesioned 6-OHDA-rats. The strength of the preclinical data accumulated so far suggests that the use of such an A2A and NR2B antagonist combination could bring significant motor improvement to PD patients, without inducing the motor complications induced by L-Dopa therapy. Although encouraging, these preclinical data need to be confirmed in the clinic.


Subject(s)
Antiparkinson Agents/pharmacology , Benzothiazoles/pharmacology , MPTP Poisoning/drug therapy , Motor Activity/drug effects , Receptors, Adenosine A2/genetics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Callithrix , Drug Administration Schedule , Drug Combinations , Drug Evaluation, Preclinical , Drug Synergism , Dyskinesia, Drug-Induced/prevention & control , Female , Gene Expression , MPTP Poisoning/genetics , MPTP Poisoning/metabolism , MPTP Poisoning/physiopathology , Male , Motor Activity/physiology , Receptors, Adenosine A2/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Treatment Outcome
16.
J Clin Pharmacol ; 57(12): 1582-1590, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28650526

ABSTRACT

Phosphoinositide 3 kinases are targets for development of small-molecule inhibitors to disrupt progression of immune-inflammatory diseases. This phase 1 open-label study (Eudract 2014-005353-39) evaluated the safety and relative bioavailability of 2 new seletalisib (UCB5857) formulations (A and B) compared with a reference formulation. Absolute bioavailability (period 1a, n = 6) and disposition and metabolism (period 1b, n = 6) of the reference formulation were evaluated: healthy subjects received 30 mg orally plus ∼20 µg of a 14 C-labeled microtracer (intravenously in 1a, orally in 1b). New formulations were evaluated: subjects from periods 1a and 1b were pooled and randomly distributed to receive a single oral dose (30 mg) of formulation A (n = 6) or B (n = 6) in periods 2 and 3, using a crossover design. Absolute oral bioavailability of seletalisib was 97% (90% confidence interval 87, 107). Unchanged [14 C]seletalisib was the predominant radioactive component in plasma (94.8%). After oral dosing, the radioactive dose was primarily recovered in feces (74.6%, geometric coefficient of variation [GeoCV] 18.1%), mostly as metabolites. Seletalisib demonstrated a 24-hour terminal half-life, volume of distribution of 60.9 L (GeoCV 23.8%), and a total plasma clearance of 1.7 L/h (GeoCV 35.4%). Formulations A and B displayed similar or even higher exposure compared with reference seletalisib (areas under the concentration-time curves 19 337 [GeoCV 30.8%], 20 380 [GeoCV 37.7%], and 15 932 [GeoCV 36.4%] h·ng/mL, respectively). New formulations A and B were bioequivalent with each other, and all 3 formulations showed acceptable safety profiles. This radiolabeled microtracer approach successfully informed on the absorption, distribution, metabolism, and excretion of seletalisib and further guided the mechanistic pharmacokinetic modeling.


Subject(s)
Pyridines/metabolism , Pyridines/pharmacokinetics , Quinolines/metabolism , Quinolines/pharmacokinetics , Area Under Curve , Biological Availability , Carbon Radioisotopes , Half-Life , Humans , Pyridines/chemistry , Quinolines/chemistry
17.
Biopharm Drug Dispos ; 38(3): 209-230, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27976409

ABSTRACT

The dissolution, intestinal absorption and presystemic metabolism of a drug depend on its physicochemical characteristics but also on numerous physiological (e.g. gastrointestinal pH, volume, transit time, morphology) and biochemical factors (e.g. luminal enzymes and flora, intestinal wall enzymes and transporters). Over the past decade, evidence has accumulated indicating that these factors may differ in children and adults resulting in age-related changes in drug exposure and drug response. Thus, drug dosage may require adjustment for the pediatric population to ensure the desired therapeutic outcome and to avoid side-effects. Although tremendous progress has been made in understanding the effects of age on intestinal physiology and function, significant knowledge gaps remain. Studying and predicting pharmacokinetics in pediatric patients remains challenging due to ethical concerns associated with clinical trials in this vulnerable population, and because of the paucity of predictive in vitro and in vivo animal assays. This review details the current knowledge related to developmental changes determining intestinal drug absorption and pre-systemic metabolism. Supporting experimental approaches as well as physiologically based pharmacokinetic modeling are also discussed together with their limitations and challenges. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Aging/metabolism , Intestinal Absorption/physiology , Intestinal Mucosa/metabolism , Models, Biological , Pediatrics/methods , Pharmacokinetics , Administration, Oral , Humans , Intestines/growth & development
18.
Drug Metab Dispos ; 44(6): 792-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27002062

ABSTRACT

Brivaracetam (BRV) is a high-affinity synaptic vesicle protein 2A ligand developed for the treatment of uncontrolled partial-onset seizures. The present phase I, open-label, two-way crossover study was designed to assess the effect of rifampin on the pharmacokinetics of BRV and its hydroxy (BRV-OH), acid (BRV-AC), and hydroxy acid (BRV-OHAC) metabolites. Twenty-six healthy subjects received BRV (150-mg single oral dose) either alone or following 5 days of rifampin 600 mg/day. BRV and its metabolites were examined for their plasma profiles and urinary excretion. Pharmacokinetic modeling was developed to estimate the rate constants of the various metabolic routes. Parallel in vitro assays were conducted to characterize the hydrolysis of BRV to BRV-AC as well as to identify any potential effect of rifampin on the hydrolysis reaction. Rifampin did not significantly affect the maximum plasma concentration (Cmax) of BRV, but decreased its area under the curve (AUC) by 45%. In addition, rifampin significantly increased the AUC of BRV-OH (+109%), decreased the AUC of BRV-AC (-53%), but had little effect on BRV-OHAC (-10%). In vitro assays showed that the major urinary metabolite BRV-AC (33% of the dose) was likely to be formed by amidase EC 3.5.1.4. In vitro data indicated that the enzyme was not significantly inhibited nor induced by rifampin. Modeling confirmed that all of the observed changes in vivo were secondary to the induction of the CYP2C19-mediated hydroxylation of BRV to BRV-OH (3.7-fold increase in the rate constant).


Subject(s)
Antibiotics, Antitubercular/pharmacology , Anticonvulsants/pharmacokinetics , Hydrolysis/drug effects , Pyrrolidinones/pharmacokinetics , Rifampin/pharmacology , Adolescent , Adult , Area Under Curve , Cross-Over Studies , Cytochrome P-450 CYP2C19/metabolism , Healthy Volunteers , Humans , Hydroxy Acids/metabolism , Hydroxylation/drug effects , Male , Middle Aged , Young Adult
19.
Epilepsia ; 57(4): 538-48, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26920914

ABSTRACT

Despite availability of effective antiepileptic drugs (AEDs), many patients with epilepsy continue to experience refractory seizures and adverse events. Achievement of better seizure control and fewer side effects is key to improving quality of life. This review describes the rationale for the discovery and preclinical profile of brivaracetam (BRV), currently under regulatory review as adjunctive therapy for adults with partial-onset seizures. The discovery of BRV was triggered by the novel mechanism of action and atypical properties of levetiracetam (LEV) in preclinical seizure and epilepsy models. LEV is associated with several mechanisms that may contribute to its antiepileptic properties and adverse effect profile. Early findings observed a moderate affinity for a unique brain-specific LEV binding site (LBS) that correlated with anticonvulsant effects in animal models of epilepsy. This provided a promising molecular target and rationale for identifying selective, high-affinity ligands for LBS with potential for improved antiepileptic properties. The later discovery that synaptic vesicle protein 2A (SV2A) was the molecular correlate of LBS confirmed the novelty of the target. A drug discovery program resulted in the identification of anticonvulsants, comprising two distinct families of high-affinity SV2A ligands possessing different pharmacologic properties. Among these, BRV differed significantly from LEV by its selective, high affinity and differential interaction with SV2A as well as a higher lipophilicity, correlating with more potent and complete seizure suppression, as well as a more rapid brain penetration in preclinical models. Initial studies in animal models also revealed BRV had a greater antiepileptogenic potential than LEV. These properties of BRV highlight its promising potential as an AED that might provide broad-spectrum efficacy, associated with a promising tolerability profile and a fast onset of action. BRV represents the first selective SV2A ligand for epilepsy treatment and may add a significant contribution to the existing armamentarium of AEDs.


Subject(s)
Anticonvulsants/metabolism , Drug Discovery/trends , Epilepsy/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Pyrrolidinones/metabolism , Animals , Anticonvulsants/therapeutic use , Dose-Response Relationship, Drug , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/trends , Epilepsy/drug therapy , Humans , Ligands , Pyrrolidinones/therapeutic use , Treatment Outcome
20.
Epilepsia ; 57(2): 201-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26663401

ABSTRACT

OBJECTIVE: Rapid distribution to the brain is a prerequisite for antiepileptic drugs used for treatment of acute seizures. The preclinical studies described here investigated the high-affinity synaptic vesicle glycoprotein 2A (SV2A) antiepileptic drug brivara-cetam (BRV) for its rate of brain penetration and its onset of action. BRV was compared with levetiracetam (LEV). METHODS: In vitro permeation studies were performed using Caco-2 cells. Plasma and brain levels were measured over time after single oral dosing to audiogenic mice and were correlated with anticonvulsant activity. Tissue distribution was investigated after single dosing to rat (BRV and LEV) and dog (LEV only). Positron emission tomography (PET) displacement studies were performed in rhesus monkeys using the SV2A PET tracer [11C]UCB-J. The time course of PET tracer displacement was measured following single intravenous (IV) dosing with LEV or BRV. Rodent distribution data and physiologically based pharmacokinetic (PBPK) modeling were used to compute blood-brain barrier permeability (permeability surface area product, PS) values and then predict brain kinetics in man. RESULTS: In rodents, BRV consistently showed a faster entry into the brain than LEV; this correlated with a faster onset of action against seizures in audiogenic susceptible mice. The higher permeability of BRV was also demonstrated in human cells in vitro. PBPK modeling predicted that, following IV dosing to human subjects, BRV might distribute to the brain within a few minutes compared with approximately 1 h for LEV (PS of 0.315 and 0.015 ml/min/g for BRV and LEV, respectively). These data were supported by a nonhuman primate PET study showing faster SV2A occupancy by BRV compared with LEV. SIGNIFICANCE: These preclinical data demonstrate that BRV has rapid brain entry and fast brain SV2A occupancy, consistent with the fast onset of action in the audiogenic seizure mice assay. The potential benefit of BRV for treatment of acute seizures remains to be confirmed in clinical studies.


Subject(s)
Anticonvulsants/pharmacokinetics , Blood-Brain Barrier/metabolism , Brain/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Pyrrolidinones/pharmacokinetics , Animals , Brain/diagnostic imaging , Caco-2 Cells , Dogs , Epilepsy, Reflex , Humans , In Vitro Techniques , Levetiracetam , Macaca mulatta , Mice , Molecular Targeted Therapy , Permeability , Piracetam/analogs & derivatives , Piracetam/pharmacokinetics , Positron-Emission Tomography , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...