Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biomedicines ; 11(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36979937

ABSTRACT

BACKGROUND: Although the antidepressant potential of repetitive transcranial magnetic stimulation (rTMS), the pleiotropic effects in geriatric depression (GD) are poorly investigated. We tested rTMS on depression, cognitive performance, growth/neurotrophic factors, cerebral blood flow (CBF) to transcranial Doppler sonography (TCD), and motor-evoked potentials (MEPs) to TMS in GD. METHODS: In this case series study, six drug-resistant subjects (median age 68.0 years) underwent MEPs at baseline and after 3 weeks of 10 Hz rTMS on the left dorsolateral prefrontal cortex. The percentage change of serum nerve growth factor, vascular endothelial growth factor, brain-derived growth factor, insulin-like growth factor-1, and angiogenin was obtained. Assessments were performed at baseline, and at the end of rTMS; psychocognitive tests were also repeated after 1, 3, and 6 months. RESULTS: Chronic cerebrovascular disease was evident in five patients. No adverse/undesirable effect was reported. An improvement in mood was observed after rTMS but not at follow-up. Electrophysiological data to TMS remained unchanged, except for an increase in the right median MEP amplitude. TCD and neurotrophic/growth factors did not change. CONCLUSIONS: We were unable to detect a relevant impact of high-frequency rTMS on mood, cognition, cortical microcircuits, neurotrophic/growth factors, and CBF. Cerebrovascular disease and exposure to multiple pharmacological treatments might have contributed.

2.
ChemMedChem ; 15(3): 302-316, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31797568

ABSTRACT

Proteasome malfunction parallels abnormal amyloid accumulation in Alzheimer's Disease (AD). Here we scrutinize a small library of pyrazolones by assaying their ability to enhance proteasome activity and protect neuronal cells from amyloid toxicity. Tube tests evidenced that aminopyrine and nifenazone behave as 20S proteasome activators. Enzyme assays carried out on an "open gate" mutant (α3ΔN) proteasome demonstrated that aminopyrine activates proteasome through binding the α-ring surfaces and influencing gating dynamics. Docking studies coupled with STD-NMR experiments showed that H-bonds and π-π stacking interactions between pyrazolones and the enzyme play a key role in bridging α1 to α2 and, alternatively, α5 to α6 subunits of the outer α-ring. Aminopyrine and nifenazone exhibit neurotrophic properties and protect differentiated human neuroblastoma SH-SY5Y cells from ß-amyloid (Aß) toxicity. ESI-MS studies confirmed that aminopyrine enhances Aß degradation by proteasome in a dose-dependent manner. Our results suggest that some pyrazolones and, in particular, aminopyrine are promising compounds for the development of proteasome activators for AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Proteasome Endopeptidase Complex/metabolism , Pyrazolones/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Proteasome Endopeptidase Complex/genetics , Pyrazolones/chemistry , Structure-Activity Relationship
3.
Mol Cell Biochem ; 425(1-2): 85-93, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27804051

ABSTRACT

Human amylin (hA1-37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic ß-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17-29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17-29 ß-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17-29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17-29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17-29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17-29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (-44% of cell viability, p < 0.01 compared to controls). Anti-RAGE or anti-p75-NGFR antibodies almost abolished cell toxicity of hA17-29 aggregates. These results indicate that copper(II) influences the aggregation process and hA17-29 toxicities are especially attributable to oligomeric aggregates. hA17-29 aggregate toxicity seems to be mediated by RAGE and p75-NGFR receptors which might be potential targets for new drugs in T2DM treatment.


Subject(s)
Amyloid/toxicity , Copper/toxicity , Islet Amyloid Polypeptide/toxicity , Nerve Tissue Proteins/metabolism , Receptor for Advanced Glycation End Products/metabolism , Receptors, Nerve Growth Factor/metabolism , Animals , Cell Line , Humans , Nerve Tissue Proteins/genetics , Rats , Receptor for Advanced Glycation End Products/genetics , Receptors, Nerve Growth Factor/genetics
4.
J Inorg Biochem ; 164: 59-69, 2016 11.
Article in English | MEDLINE | ID: mdl-27586814

ABSTRACT

Semax is a heptapeptide (Met-Glu-His-Phe-Pro-Gly-Pro) that encompasses the sequence 4-7 of N-terminal domain of the adrenocorticotropic hormone and a C-terminal Pro-Gly-Pro tripeptide. N-terminal amino group acetylation (Ac-Semax) modulates the chemical and biological properties of parental peptide, modifying the ability of Semax to form complex species with Cu(II) ion. At physiological pH, the main complex species formed by Ac-Semax, [CuLH-2]2-, consists in a distorted CuN3O chromophore with a weak apical interaction of the methionine sulphur. Such a complex differs from the Cu(II)-Semax complex system, which exhibits a CuN4 chromophore. The reduced ligand field affects the [CuLH-2]2- formal redox potential, which is more positive than that of Cu(II)-Semax corresponding species. In the amino-free form, the resulting complex species is redox-stable and unreactive against ascorbic acid, unlike the acetylated form. Semax acetylation did not protect from Cu(II) induced toxicity on a SH-SY5Y neuroblastoma cell line, thus demonstrating the crucial role played by the free NH2 terminus in the cell protection. Since several brain diseases are associated either to Cu(II) or Zn(II) dyshomeostasis, here we characterized also the complex species formed by Zn(II) with Semax and Ac-Semax. Both peptides were able to form Zn(II) complex species with comparable strength. Confocal microscopy imaging confirmed that peptide group acetylation does not affect the Zn(II) influx in neuroblastoma cells. Moreover, a punctuate distribution of Zn(II) within the cells suggests a preferred subcellular localization that might explain the zinc toxic effect. A future perspective can be the use of Ac-Semax as ionophore in antibody drug conjugates to produce a dysmetallostasis in tumor cells.


Subject(s)
Adrenocorticotropic Hormone/analogs & derivatives , Coordination Complexes , Copper , Ionophores , Peptide Fragments , Zinc , Acetylation , Adrenocorticotropic Hormone/chemical synthesis , Adrenocorticotropic Hormone/chemistry , Adrenocorticotropic Hormone/pharmacology , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , Humans , Ionophores/chemical synthesis , Ionophores/chemistry , Ionophores/pharmacology , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Zinc/chemistry , Zinc/pharmacology
5.
Metallomics ; 8(8): 750-61, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27328010

ABSTRACT

The sole role of bradykinin (BK) as an inflammatory mediator is controversial, as recent data also support an anti-inflammatory role for BK in Alzheimer's disease (AD). The involvement of two different receptors (B1R and B2R) could be a key to understand this issue. However, although copper and zinc dyshomeostasis has been demonstrated to be largely involved in the development of AD, a detailed study of the interaction of BK with these two metal ions has never been addressed. In this work, we have applied mass spectrometry, circular dichroism as well as computational methods in order to assess if copper and zinc have the ability to modulate the conformation and oligomerization of BK. In addition, we have correlated the chemical data with the effect of metals on the activity of BK analyzed in cell cultures by biochemical procedures. The biochemical analyses on monocyte/macrophage cell culture (THP-1 Cell Line human) in line with the effect of metals on the conformation of BK showed that the presence of copper can affect the signaling cascade mediated by the BK receptors. The results obtained show a further role of metal ions, particularly copper, in the development and outcome of neuroinflammatory diseases. The possible implications in AD are discussed.


Subject(s)
Bradykinin/chemistry , Bradykinin/metabolism , Copper/pharmacology , Monocytes/metabolism , Protein Conformation/drug effects , Protein Multimerization/drug effects , Zinc/pharmacology , Cells, Cultured , Humans , Monocytes/cytology , Monocytes/drug effects , Signal Transduction/drug effects
6.
Front Neurosci ; 10: 569, 2016.
Article in English | MEDLINE | ID: mdl-28090201

ABSTRACT

The nerve growth factor (NGF) N-terminus peptide, NGF(1-14), and its acetylated form, Ac-NGF(1-14), were investigated to scrutinize the ability of this neurotrophin domain to mimic the whole protein. Theoretical calculations demonstrated that non-covalent forces assist the molecular recognition of TrkA receptor by both peptides. Combined parallel tempering/docking simulations discriminated the effect of the N-terminal acetylation on the recognition of NGF(1-14) by the domain 5 of TrkA (TrkA-D5). Experimental findings demonstrated that both NGF(1-14) and Ac-NGF(1-14) activate TrkA signaling pathways essential for neuronal survival. The NGF-induced TrkA internalization was slightly inhibited in the presence of Cu2+ and Zn2+ ions, whereas the metal ions elicited the NGF(1-14)-induced internalization of TrkA and no significant differences were found in the weak Ac-NGF(1-14)-induced receptor internalization. The crucial role of the metals was confirmed by experiments with the metal-chelator bathocuproine disulfonic acid, which showed different inhibitory effects in the signaling cascade, due to different metal affinity of NGF, NGF(1-14) and Ac-NGF(1-14). The NGF signaling cascade, activated by the two peptides, induced CREB phosphorylation, but the copper addition further stimulated the Akt, ERK and CREB phosphorylation in the presence of NGF and NGF(1-14) only. A dynamic and quick influx of both peptides into PC12 cells was tracked by live cell imaging with confocal microscopy. A significant role of copper ions was found in the modulation of peptide sub-cellular localization, especially at the nuclear level. Furthermore, a strong copper ionophoric ability of NGF(1-14) was measured. The Ac-NGF(1-14) peptide, which binds copper ions with a lower stability constant than NGF(1-14), exhibited a lower nuclear localization with respect to the total cellular uptake. These findings were correlated to the metal-induced increase of CREB and BDNF expression caused by NGF(1-14) stimulation. In summary, we here validated NGF(1-14) and Ac-NGF(1-14) as first examples of monomer and linear peptides able to activate the NGF-TrkA signaling cascade. Metal ions modulated the activity of both NGF protein and the NGF-mimicking peptides. Such findings demonstrated that NGF(1-14) sequence can reproduce the signal transduction of whole protein, therefore representing a very promising drug candidate for further pre-clinical studies.

7.
ACS Chem Neurosci ; 6(8): 1379-92, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-25939060

ABSTRACT

Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.


Subject(s)
Nerve Growth Factor/chemistry , Nerve Growth Factor/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Animals , Cell Enlargement/drug effects , Cell Proliferation/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Molecular Docking Simulation , Nerve Growth Factor/genetics , Neurites/drug effects , Neurites/physiology , Neurogenesis/drug effects , Neuroprotective Agents/chemistry , PC12 Cells , Phosphorylation/drug effects , Rats , Receptor, trkA/metabolism , Time Factors
8.
Inorg Chem ; 52(19): 11075-83, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24070197

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal differentiation, growth, and survival; it is involved in memory formation and higher cognitive functions. The N-terminal domain of BDNF is crucial for the binding selectivity and activation of its specific TrkB receptor. Zn(2+) ion binding may influence BDNF activity. Zn(2+) complexes with the peptide fragment BDNF(1-12) encompassing the sequence 1-12 of the N-terminal domain of BDNF were studied by means of potentiometry, electrospray mass spectrometry, NMR, and density functional theory (DFT) approaches. The predominant Zn(2+) complex species, at physiological pH, is [ZnL] in which the metal ion is bound to an amino, an imidazole, and two water molecules (NH2, N(Im), and 2O(water)) in a tetrahedral environment. DFT-based geometry optimization of the zinc coordination environment showed a hydrogen bond between the carboxylate and a water molecule bound to zinc in [ZnL]. The coordination features of the acetylated form [AcBDNF(1-12)] and of a single mutated peptide [BDNF(1-12)D3N] were also characterized, highlighting the role of the imidazole side chain as the first anchoring site and ruling out the direct involvement of the aspartate residue in the metal binding. Zn(2+) addition to the cell culture medium induces an increase in the proliferative activity of the BDNF(1-12) peptide and of the whole protein on the SHSY5Y neuroblastoma cell line. The effect of Zn(2+) is opposite to that previously observed for Cu(2+) addition, which determines a decrease in the proliferative activity for both peptide and protein, suggesting that these metals might discriminate and modulate differently the activity of BDNF.


Subject(s)
Brain-Derived Neurotrophic Factor/chemistry , Peptide Fragments/chemistry , Quantum Theory , Zinc/chemistry , Brain-Derived Neurotrophic Factor/metabolism , Cell Line, Tumor , Cell Proliferation , Coordination Complexes/chemistry , Drug Stability , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Peptide Fragments/metabolism , Spectrometry, Mass, Electrospray Ionization , Zinc/pharmacology
9.
Bioconjug Chem ; 24(4): 648-57, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23451795

ABSTRACT

Antisense oligonucleotides are promising therapeutic agents against a variety of diseases. Effective delivery of these molecules is critical in view of their clinical application. Despite the richness of synthetic strategies addressed to the lipophilic modification of oligodeoxynucleotides (ODNs) for enhancing their pharmacokinetic behavior and trans-membrane delivery, the phosphatidyl group (1,2-di-O-acyl-sn-glycero-3-phosphoryl) has been never used as the lipophilic moiety of lipid-ODN conjugates. The present paper reports a general procedure for synthesizing 5'-phosphatidyl-ODNs. By this procedure, phosphatidyl conjugates of a VEGF antisense-ODN have been prepared, which differ in the fatty acid composition of their phosphatidyl moiety. These new lipid-ODN conjugates, which have been characterized on the basis of their physicochemical properties, showed an improved resistance to exonucleases and were able to lower the VEGF-mRNA expression in human SH-SY5Y neuroblastoma cells more effectively than the relevant free antisense-ODN did.


Subject(s)
Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , Phosphatidic Acids/chemistry , Vascular Endothelial Growth Factor A/genetics , Cell Survival/drug effects , Exonucleases/metabolism , Humans , Molecular Structure , Phosphatidic Acids/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Tumor Cells, Cultured , Vascular Endothelial Growth Factor A/biosynthesis
10.
J Inorg Biochem ; 111: 59-69, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22484501

ABSTRACT

GHHPH is the peptide repeat present in histidine-proline rich glycoprotein (HPRG), a plasma glycoprotein involved in angiogenesis process. The copper(II) ions interaction with mono (Ac-GHHPHG-NH(2)) and its bis-repeat (Ac-GHHPHGHHPHG-NH(2)) was investigated by means of potentiometric and spectroscopic techniques. To single out the copper(II) coordination environments of different species formed with Ac-GHHPHG-NH(2), three single point mutated peptides were also synthesized and their ability to coordinate Cu(2+) investigated. Ac-GHHPHG-NH(2) binds Cu(2+) by the imidazole side chain and the amide nitrogen deprotonation that takes place towards the N-terminus. The bis-repeat is able to bind Cu(2+) more efficiently than Ac-GHHPHG-NH(2). This difference is not only due to the number of His residues in the sequence but also to the different binding sites. In fact, the comparison of the potentiometric and spectroscopic data of the copper(II) complexes with a bis-repeatPeg construct Ac-(GHHPHG)-Peg-(GHHPHG)-NH(2) and those of the metal complexes with Ac-HGHH-NH(2), indicates that the central HGHH amino acid sequence is the main copper(II) binding site.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Glycoproteins/chemistry , Peptide Fragments/chemistry , Amino Acid Sequence , Binding Sites , Circular Dichroism , Coordination Complexes/metabolism , Copper/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Hydrogen-Ion Concentration , Molecular Structure , Peptide Fragments/genetics , Peptide Fragments/metabolism , Point Mutation , Potentiometry , Proline/chemistry , Proline/genetics , Proline/metabolism , Protein Binding , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Spectrophotometry
11.
Chemistry ; 17(13): 3726-38, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21394800

ABSTRACT

There is a significant overlap between brain areas with Zn(2+) and Cu(2+) pathological dys-homeostasis and those in which the nerve growth factor (NGF) performs its biological role. The protein NGF is necessary for the development and maintenance of the sympathetic and sensory nervous systems. Its flexible N-terminal region has been shown to be a critical domain for TrkA receptor binding and activation. Computational analyses show that Zn(2+) and Cu(2+) form pentacoordinate complexes involving both the His4 and His8 residues of the N-terminal domain of one monomeric unit and the His84 and Asp105 residues of the other monomeric unit of the NGF active dimer. To date, neither experimental data on the coordination features have been reported, nor has one of the hypotheses according to which Zn(2+) and Cu(2+) may have different binding environments or the Ser1 α-amino group could be involved in coordination been supported. The peptide fragment, encompassing the 1-14 sequence of the human NGF amino-terminal domain (NGF(1-14)), blocked at the C terminus, was synthesised and its Cu(2+) and Zn(2+) complexes characterized by means of potentiometric and spectroscopic (UV/Vis, CD, NMR, and EPR) techniques. The N-terminus-acetylated form of NGF(1-14) was also investigated to evaluate the involvement of the Ser1 α-amino group in metal-ion coordination. Our results demonstrate that the amino group is the first anchoring site for Cu(2+) and is involved in Zn(2+) coordination at physiological pH. Finally, a synergic proliferative activity of both NGF(1-14) and the whole protein on SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu(2+). This effect was not observed after treatment with the N-acetylated peptide fragment, demonstrating a functional involvement of the N-terminal amino group in metal binding and peptide activity.


Subject(s)
Copper/chemistry , Nerve Growth Factor/chemistry , Peptide Fragments/chemistry , Receptor, trkA/chemistry , Zinc/chemistry , Copper/metabolism , Humans , Molecular Sequence Data , Molecular Structure , Nerve Growth Factor/metabolism , Peptide Fragments/metabolism , Protein Binding , Receptor, trkA/metabolism , Spectrophotometry, Ultraviolet , Zinc/metabolism
12.
Neurochem Res ; 35(12): 2144-53, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21053069

ABSTRACT

Poly(ADP-ribose) polymerases (PARPs) play a crucial role in DNA damage surveillance through their nick sensor functions. Since PARPs' over activation leads to an excessive consumption of NAD(+) and ATP depletion, these enzymes also are involved in the early events of programmed cell death as well as in necrosis. In order to verify the protective action of L: -carnosine and trehalose against NO induced cell death, in the present study we examined their effects on the expression of PARP-1, PARP-2 and iNOS in primary rat astrocyte and oligodendrocyte cells, treated with lipopolysaccharide (LPS) and interferon gamma (INFγ), through semi-quantitative PCR and western analysis. To further characterize the molecular mechanisms underlying L-carnosine and trehalose action, we measured cell viability, nitrite production and LDH release. The data obtained clearly demonstrate that in the stress model employed L-carnosine and trehalose down regulate PARP-1 and PARP-2 expression in both cell phenotypes, thus suggesting their possible application in clinical trials.


Subject(s)
Carnosine/pharmacology , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Trehalose/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Base Sequence , Blotting, Western , Cells, Cultured , DNA Primers , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1 , Polymerase Chain Reaction , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...