Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Res ; 205: 107402, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39024832

ABSTRACT

OBJECTIVE: This study aims to assess the clinical, inflammatory, and genetic profiles of traumatic brain injury (TBI) patients over a 2-year follow-up period, focusing on the development of posttraumatic epilepsy (PTE). METHODS: Fifty-nine patients with acute TBI were recruited in the emergency unit of a hospital in Brazil. Clinical data and blood samples were collected after 10 days of hospitalization for posterior genetic profile (Apolipoprotein E- ApoE and Glutamic Acid Descarboxylase-GAD sequencing) analyses. A subset of 19 patients were assessed for cytokine markers (mRNA expression). The development of PTE was investigated for two years following TBI. Statistical analyses including univariate analysis, multiple correspondence analysis, and Mann-Whitney test were performed. RESULTS: Analysis revealed an association between severe TBI and requirement for neurosurgery and polytrauma (p<0.05), as well as the development of PTE over a two-year follow-up period (p<0.05). Multiple correspondence analysis identified two distinct profiles associated with PTE and Non-PTE outcomes. The PTE profile showed a higher prevalence of the ApoE genotype E3/E3 and GAD1 SNP (rs769391) genotype AA in our study, while the Non-PTE profile showed a higher presence of E3/E4. mRNA expression analysis demonstrated acute elevated levels of TNF-α in the PTE group as compared to Non-PTE patients (6.70±1.53 vs 5.31 ±0.33, p<0.01). SIGNIFICANCE: Our findings underscore the multifactorial nature of aspects potentially contributing to PTE. It is unlikely that any single factor might in isolation have a strong causative influence over the development of epilepsy after TBI. Our results provide a suggestion of potential clustering that might be relevant as prognostic factors for PTE.

2.
Front Cell Neurosci ; 16: 949412, 2022.
Article in English | MEDLINE | ID: mdl-36313615

ABSTRACT

The neurovascular unit (NVU) is a multicellular structure comprising of neurons, glial cells, and non-neural cells, and it is supported by a specialized extracellular matrix, the basal lamina. Astrocytes, brain microvascular endothelial cells (BMECs), pericytes, and smooth muscle cells constitute the blood-brain barrier (BBB). BMECs have a mesodermal origin and invade the nervous system early in neural tube development, forming the BBB anatomical core. BMECs are connected by adherent junction complexes composed of integral membrane and cytoplasmic proteins. In vivo and in vitro studies have shown that, given the proximity and relationship with neural cells, BMECs acquire a unique gene expression profile, proteome, and specific mechanical and physical properties compared to endothelial cells from the general vasculature. BMECs are fundamental in maintaining brain homeostasis by regulating transcellular and paracellular transport of fluids, molecules, and cells. Therefore, it is essential to gain in-depth knowledge of the dynamic cellular structure of the cells in the NVU and their interactions with health and disease. Here we describe a significantly improved and simplified protocol using C57BL/6 newborn mice at postnatal day 1 (PND1) to isolate, purify, and culture BMECs monolayers in two different substrates (glass coverslips and transwell culture inserts). In vitro characterization and validation of the BMEC primary culture monolayers seeded on glass or insert included light microscopy, immunolabeling, and gene expression profile. Transendothelial electrical resistance (TEER) measurement and diffusion test were used as functional assays for adherent junction complexes and integrity and permeability of BMECs monolayers. The protocol presented here for the isolation and culture of BMECs is more straightforward than previously published protocols and yields a high number of purified cells. Finally, we tested BMECs function using the oxygen-glucose deprivation (OGD) model of hypoxia. This protocol may be suitable as a bioscaffold for secondary cell seeding allowing the study and better understanding of the NVU.

SELECTION OF CITATIONS
SEARCH DETAIL
...