Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(31): 4516-4524, 2017 08.
Article in English | MEDLINE | ID: mdl-28368416

ABSTRACT

Tumor initiation and metastasis formation in many cancers have been associated with emergence of a gene expression program normally active in embryonic or organ-specific stem cells. In particular, the stem cell transcription factor Sox2 is not only expressed in a variety of tumors, but is also required for their formation. Melanoma, the most aggressive skin tumor, derives from melanocytes that during development originate from neural crest stem cells. While neural crest stem cells do not express Sox2, expression of this transcription factor has been reported in melanoma. However, the role of Sox2 in melanoma is controversial. To study the requirement of Sox2 for melanoma formation, we therefore performed CRISPR-Cas9-mediated gene inactivation in human melanoma cells. In addition, we conditionally inactivated Sox2 in a genetically engineered mouse model, in which melanoma spontaneously develops in the context of an intact stroma and immune system. Surprisingly, in both models, loss of Sox2 did neither affect melanoma initiation, nor growth, nor metastasis formation. The lack of a tumorigenic role of Sox2 in melanoma might reflect a distinct stem cell program active in neural crest stem cells and during melanoma formation.


Subject(s)
Melanoma/etiology , SOXB1 Transcription Factors/physiology , Animals , Humans , Melanoma/mortality , Melanoma/secondary , Mice
2.
Nucleic Acids Res ; 40(14): 6461-76, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22495934

ABSTRACT

The transcription factor Sox2 is essential for neural stem cells (NSC) maintenance in the hippocampus and in vitro. The transcription factor Emx2 is also critical for hippocampal development and NSC self-renewal. Searching for 'modifier' genes affecting the Sox2 deficiency phenotype in mouse, we observed that loss of one Emx2 allele substantially increased the telencephalic ß-geo (LacZ) expression of a transgene driven by the 5' or 3' Sox2 enhancer. Reciprocally, Emx2 overexpression in NSC cultures inhibited the activity of the same transgene. In vivo, loss of one Emx2 allele increased Sox2 levels in the medial telencephalic wall, including the hippocampal primordium. In hypomorphic Sox2 mutants, retaining a single 'weak' Sox2 allele, Emx2 deficiency substantially rescued hippocampal radial glia stem cells and neurogenesis, indicating that Emx2 functionally interacts with Sox2 at the stem cell level. Electrophoresis mobility shift assays and transfection indicated that Emx2 represses the activities of both Sox2 enhancers. Emx2 bound to overlapping Emx2/POU-binding sites, preventing binding of the POU transcriptional activator Brn2. Additionally, Emx2 directly interacted with Brn2 without binding to DNA. These data imply that Emx2 may perform part of its functions by negatively modulating Sox2 in specific brain areas, thus controlling important aspects of NSC function in development.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , Homeodomain Proteins/metabolism , SOXB1 Transcription Factors/genetics , Telencephalon/metabolism , Transcription Factors/metabolism , Alleles , Animals , Binding Sites , Cell Line, Tumor , Cells, Cultured , Genes, Reporter , Hippocampus/metabolism , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , POU Domain Factors/antagonists & inhibitors , POU Domain Factors/metabolism , Transcription Factors/genetics
3.
Cell Death Differ ; 17(8): 1345-53, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20489730

ABSTRACT

The development and maintenance of most tissues and organs require the presence of multipotent and unipotent stem cells that have the ability of self-renewal as well as of generating committed, further differentiated cell types. The transcription factor Sox2 is essential for embryonic development and maintains pluripotency and self-renewal in embryonic stem cells. It is expressed in immature osteoblasts/osteoprogenitors in vitro and in vivo and is induced by fibroblast growth factor signaling, which stimulates osteoblast proliferation and inhibits differentiation. Sox2 overexpression can by itself inhibit osteoblast differentiation. To elucidate its function in the osteoblastic lineage, we generated mice with an osteoblast-specific, Cre-mediated knockout of Sox2. These mice are small and osteopenic, and mosaic for Sox2 inactivation. However, culturing calvarial osteoblasts from the mutant mice for 2-3 passages failed to yield any Sox2-null cells. Inactivation of the Sox2 gene by Cre-mediated excision in cultured osteoblasts showed that Sox2-null cells could not survive repeated passage in culture, could not form colonies, and arrested their growth with a senescent phenotype. In addition, expression of Sox2-specific shRNAs in independent osteoblastic cell lines suppressed their proliferative ability. Osteoblasts capable of forming 'osteospheres' are greatly enriched in Sox2 expression. These data identify a novel function for Sox2 in the maintenance of self-renewal in the osteoblastic lineage.


Subject(s)
Osteoblasts/cytology , SOXB1 Transcription Factors/metabolism , Activating Transcription Factor 2/metabolism , Animals , Cell Differentiation , Cell Line , Cell Lineage , Embryonic Development , Mice , Mice, Knockout , RNA Interference , SOXB1 Transcription Factors/genetics , Signal Transduction
4.
Development ; 127(11): 2367-82, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10804179

ABSTRACT

Sox2 is one of the earliest known transcription factors expressed in the developing neural tube. Although it is expressed throughout the early neuroepithelium, we show that its later expression must depend on the activity of more than one regionally restricted enhancer element. Thus, by using transgenic assays and by homologous recombination-mediated deletion, we identify a region upstream of Sox2 (-5.7 to -3.3 kb) which can not only drive expression of a (beta)-geo transgene to the developing dorsal telencephalon, but which is required to do so in the context of the endogenous gene. The critical enhancer can be further delimited to an 800 bp fragment of DNA surrounding a nuclease hypersensitive site within this region, as this is sufficient to confer telencephalic expression to a 3.3 kb fragment including the Sox2 promoter, which is otherwise inactive in the CNS. Expression of the 5.7 kb Sox2(beta)-geo transgene localizes to the neural plate and later to the telencephalic ventricular zone. We show, by in vitro clonogenic assays, that transgene-expressing (and thus G418-resistant) ventricular zone cells include cells displaying functional properties of stem cells, i.e. self-renewal and multipotentiality. We further show that the majority of telencephalic stem cells express the transgene, and this expression is largely maintained over two months in culture (more than 40 cell divisions) in the absence of G418 selective pressure. In contrast, stem cells grown in parallel from the spinal cord never express the transgene, and die in G418. Expression of endogenous telencephalic genes was similarly observed in long-term cultures derived from the dorsal telencephalon, but not in spinal cord-derived cultures. Thus, neural stem cells of the midgestation embryo are endowed with region-specific gene expression (at least with respect to some networks of transcription factors, such as that driving telencephalic expression of the Sox2 transgene), which can be inherited through multiple divisions outside the embryonic environment.


Subject(s)
DNA-Binding Proteins/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Stem Cells/metabolism , Telencephalon/cytology , Animals , Brain/cytology , Cell Line , Central Nervous System/cytology , DNA-Binding Proteins/genetics , Deoxyribonuclease I/metabolism , Female , Gene Expression , HMGB Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Neurons/cytology , Nuclear Proteins/genetics , Regulatory Sequences, Nucleic Acid , SOXB1 Transcription Factors , Spinal Cord/cytology , Stem Cells/cytology , Telencephalon/embryology , Telencephalon/metabolism , Transcription Factors , Transgenes , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...