Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37737698

ABSTRACT

Measurement of the emission current at a high voltage is necessary in monitoring ion production from a corona source, to provide independent confirmation of operation. The wide common mode range required is usually obtained through an isolated system, which requires isolated power to operate, adding complexity and volume. Passing the current through a light-emitting diode (LED) provides an alternative measurement method as the LED's brightness can be used to signal the current's magnitude. The forward voltage loss across the LED is negligible compared with the emitter voltage. Selection of a discrete LED for this task rather than using one within a standard integrated optocoupler package improves the low current sensitivity by two orders of magnitude. A high efficiency discrete infrared LED-photodiode pair is demonstrated to provide measurements of corona currents between 0.2 and 20 µA using a second LED-photodiode pair for analog linearity compensation. The inherent simplicity is well suited to new applications of ion emission in propulsion and weather modification.

2.
Int J Biometeorol ; 65(1): 45-58, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32666310

ABSTRACT

The atmosphere is host to a complex electric environment, ranging from a global electric circuit generating fluctuating atmospheric electric fields to local lightning strikes and ions. While research on interactions of organisms with their electrical environment is deeply rooted in the aquatic environment, it has hitherto been confined to interactions with local electrical phenomena and organismal perception of electric fields. However, there is emerging evidence of coupling between large- and small-scale atmospheric electrical phenomena and various biological processes in terrestrial environments that even appear to be tied to continental waters. Here, we synthesize our current understanding of this connectivity, discussing how atmospheric electricity can affect various levels of biological organization across multiple ecosystems. We identify opportunities for research, highlighting its complexity and interdisciplinary nature and draw attention to both conceptual and technical challenges lying ahead of our future understanding of the relationship between atmospheric electricity and the organization and functioning of biological systems.


Subject(s)
Ecosystem , Electricity , Atmosphere
3.
Proc Math Phys Eng Sci ; 476(2238): 20190758, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32821235

ABSTRACT

A fair-weather electric field has been observed near the Earth's surface for over two centuries. The field is sustained by charge generation in distant disturbed weather regions, through current flow in the global electric circuit. Conventionally, the fair-weather part of the global circuit has disregarded clouds, but extensive layer clouds, important to climate, are widespread globally. Such clouds are not electrically inert, becoming charged at their upper and lower horizontal boundaries from vertical current flow, in a new electrical regime-neither fair nor disturbed weather; hence it is described here as semi-fair weather. Calculations and measurements show the upper cloud boundary charge is usually positive, the cloud interior positive and the lower cloud boundary negative, with the upper charge density larger, but of the same magnitude (∼nC m-2) as cloud base. Globally, the total positive charge stored by layer clouds is approximately 105 C, which, combined with the positive charge in the atmospheric column above the cloud up to the ionosphere, balances the total negative surface charge of the fair-weather regions. Extensive layer clouds are, therefore, an intrinsic aspect of the global circuit, and the resulting natural charging of their cloud droplets is a fundamental atmospheric feature.

4.
Phys Rev Lett ; 124(19): 198701, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32469542

ABSTRACT

Rainfall is hypothesized to be influenced by droplet charge, which is related to the global circuit current flowing through clouds. This is tested through examining a major global circuit current increase following the release of artificial radioactivity. Significant changes occurred in daily rainfall distribution in the Shetland Islands, away from pollution. Daily rainfall changed by 24%, and local clouds optically thickened, within the nuclear weapons test period. This supports expectations of electrically induced microphysical changes in liquid water clouds from additional ionization.

5.
Rev Sci Instrum ; 88(12): 126109, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289239

ABSTRACT

Charge is observed in clouds of all forms, which may influence their development and properties. In-cloud charge measurements require a wide dynamic range, extending from charge in aerosols and dusts to that present in thunderstorms. Unexpectedly large charge densities (>200 pC m-3) have recently been detected in layer clouds using balloon-carried linear electrometers. These, however, lead to instrument saturation if sufficient sensitivity for aerosol and droplet charge is maintained. Logarithmic electrometers provide an alternative but suffer strong non-linear thermal effects. This is a limitation for balloon-carried instruments that encounter temperature changes up to ∼100 °C, as full thermal compensation requires complexity inappropriate for disposable devices. Here, a novel hybrid system is described, combining linear and logarithmic electrometers to provide extended dynamic range (±50 pA), employing the negligible (±4%) total temperature drift of the linear device to provide in situ calibration of the logarithmic device. This combination opens up new measurement opportunities for charge in clouds, dusts, and aerosols.

6.
Rev Sci Instrum ; 86(1): 016109, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25638136

ABSTRACT

A weather balloon and its suspended instrument package behave like a pendulum with a moving pivot. This dynamical system is exploited here for the detection of atmospheric turbulence. By adding an accelerometer to the instrument package, the size of the swings induced by atmospheric turbulence can be measured. In test flights, strong turbulence has induced accelerations greater than 5g, where g = 9.81 m s(-2). Calibration of the accelerometer data with a vertically orientated lidar has allowed eddy dissipation rate values of between 10(-3) and 10(-2) m(2) s(-3) to be derived from the accelerometer data. The novel use of a whole weather balloon and its adapted instrument package can be used as a new instrument to make standardized in situ measurements of turbulence.

7.
Phys Rev Lett ; 111(11): 118501, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24074123

ABSTRACT

The plume from the 2011 eruption of Grímsvötn was highly electrically charged, as shown by the considerable lightning activity measured by the United Kingdom Met Office's low-frequency lightning detection network. Previous measurements of volcanic plumes have shown that ash particles are electrically charged up to hundreds of kilometers away from the vent, which indicates that the ash continues to charge in the plume [R. G. Harrison, K. A. Nicoll, Z. Ulanowski, and T. A. Mather, Environ. Res. Lett. 5, 024004 (2010); H. Hatakeyama J. Meteorol. Soc. Jpn. 27, 372 (1949)]. In this Letter, we study triboelectric charging of different size fractions of a sample of volcanic ash experimentally. Consistently with previous work, we find that the particle size distribution is a determining factor in the charging. Specifically, our laboratory experiments demonstrate that the normalized span of the particle size distribution plays an important role in the magnitude of charging generated. The influence of the normalized span on plume charging suggests that all ash plumes are likely to be charged, with implications for remote sensing and plume lifetime through scavenging effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...