Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Ultramicroscopy ; 193: 39-51, 2018 10.
Article in English | MEDLINE | ID: mdl-29913327

ABSTRACT

A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles.

3.
Acta Crystallogr A Found Adv ; 72(Pt 2): 236-42, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26919375

ABSTRACT

Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).


Subject(s)
Carbamazepine/chemistry , Nanoparticles/metabolism , Niacin/chemistry , Organic Chemicals/chemistry , X-Ray Diffraction/methods , Crystallography, X-Ray , Models, Molecular , Nanoparticles/chemistry , Temperature
4.
J Microsc ; 252(1): 23-34, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23889078

ABSTRACT

A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples.

5.
J Microsc ; 237(3): 511-5, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20500427

ABSTRACT

The integrated intensity of the diffracted beams present on microdiffraction precession patterns can be used to infer the 'ideal' symmetry, i.e. the symmetry which takes into account both the position and the intensity of the diffracted beams on a diffraction pattern. It is shown that this symmetry is connected with the 11 Laue classes on conventional electron precession patterns and with the centro- and non-centrosymmetrical point groups on unconventional precession patterns obtained without 'descan'.

6.
Ultramicroscopy ; 107(6-7): 474-82, 2007.
Article in English | MEDLINE | ID: mdl-17222976

ABSTRACT

Procedure for crystal structure refinement using precession electron diffraction data and Bloch-wave method for accounting multibeam scattering is described. Refinement procedure takes into account features of precession geometry. Refining model consists of structural and reduced parameters determining dynamic diffraction. Difference between measured and calculated dynamic intensities of reflections is minimized with application of a nonlinear least squares method. As test example we used Si single nanocrystals. The influence of the reduced parameters on the quality of the obtained model is discussed. Refinement procedure is a part of ASTRA software.

7.
Ultramicroscopy ; 107(6-7): 514-22, 2007.
Article in English | MEDLINE | ID: mdl-17223268

ABSTRACT

In a previous study, it was reported that the possible space groups of a crystal can be identified at a microscopic or nanoscopic scale, thanks to microdiffraction patterns obtained with a nearly parallel electron incident beam focused on a very small area of the specimen. A systematic method was proposed, which consists of the observation of a few microdiffraction patterns displaying at least two Laue zones. These microdiffraction patterns can also be obtained by using an electron precession equipment. In this case, the patterns display a very large number of reflections in the Laue zones whose intensity is the integrated intensity. These original features greatly facilitate the space group identification method and are particularly useful when the high-order Laue zones (HOLZ) are not visible on microdiffraction patterns or when very thin specimens are not available.

8.
Ultramicroscopy ; 107(6-7): 431-44, 2007.
Article in English | MEDLINE | ID: mdl-17258859

ABSTRACT

We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession "Spinning Star" system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF(2) as revealed for the first time by precise electron diffractometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...