Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Sel Evol ; 47: 62, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26239391

ABSTRACT

BACKGROUND: Among the European countries, Italy counts the largest number of local goat breeds. Thanks to the recent availability of a medium-density SNP (single nucleotide polymorphism) chip for goat, the genetic diversity of Italian goat populations was characterized by genotyping samples from 14 Italian goat breeds that originate from different geographical areas with more than 50 000 SNPs evenly distributed on the genome. RESULTS: Analysis of the genotyping data revealed high levels of genetic polymorphism and an underlying North-south geographic pattern of genetic diversity that was highlighted by both the first dimension of the multi-dimensional scaling plot and the Neighbour network reconstruction. We observed a moderate and weak population structure in Northern and Central-Southern breeds, respectively, with pairwise FST values between breeds ranging from 0.013 to 0.164 and 7.49 % of the total variance assigned to the between-breed level. Only 2.11 % of the variance explained the clustering of breeds into geographical groups (Northern, Central and Southern Italy and Islands). CONCLUSIONS: Our results indicate that the present-day genetic diversity of Italian goat populations was shaped by the combined effects of drift, presence or lack of gene flow and, to some extent, by the consequences of traditional management systems and recent demographic history. Our findings may constitute the starting point for the development of marker-assisted approaches, to better address future breeding and management policies in a species that is particularly relevant for the medium- and long-term sustainability of marginal regions.


Subject(s)
Goats/classification , Goats/genetics , Polymorphism, Single Nucleotide , Animals , Gene Flow , Genetic Drift , Genotype , Inbreeding , Italy , Phylogeography
2.
J Hered ; 105(3): 429-35, 2014.
Article in English | MEDLINE | ID: mdl-24558100

ABSTRACT

The dietary demand of the modern horse relies on high-cereal feeding and limited forage compared with natural grazing conditions, predisposing the horse to several important diseases. Salivary and pancreatic alpha-amylases (coded by AMY1 and AMY2 genes, respectively) play a crucial role in carbohydrate digestion in nonruminants, but little is known about these 2 genes in the horse. Aim of this work has been to distinguish genomic sequences of horse AMY1 and AMY2 genes and to analyze any polymorphisms in breeds historically characterized by marked differences in nutritional management. A single nucleotide polymorphism detection was performed and 7 novel single nucleotide polymorphisms were found. Three single nucleotide polymorphisms are in exons and were genotyped in 112 horses belonging to 6 breeds. One single nucleotide polymorphism in AMY1 gene distinguished Haflinger and the Italian native Murgese from the other breeds, whereas both the single nucleotide polymorphisms in AMY2 gene showed different allelic frequencies in Friesian compared with the other breeds. These differences are confirmed by quite high fixation index (Fst) values for these 2 nonsynonymous single nucleotide polymorphisms. These preliminary results highlight marked divergences in allele frequencies of AMY1 and AMY2 genes, involved in starch digestion, between horse breeds characterized by different histories of selection, thus providing first indications of possible relations between genetics and nutritional management.


Subject(s)
Digestion/genetics , Horses/genetics , Pancreatic alpha-Amylases/genetics , Salivary alpha-Amylases/genetics , Amino Acid Substitution , Animals , Base Sequence , Biodiversity , Dietary Carbohydrates , Edible Grain/chemistry , Genetic Variation , Genotyping Techniques , Horses/classification , Italy , Polymorphism, Single Nucleotide , Sequence Alignment , Sequence Analysis, DNA
3.
PLoS One ; 9(1): e86668, 2014.
Article in English | MEDLINE | ID: mdl-24497965

ABSTRACT

BACKGROUND: During the past decades, neutral DNA markers have been extensively employed to study demography, population genetics and structure in livestock, but less interest has been devoted to the evaluation of livestock adaptive potential through the identification of genomic regions likely to be under natural selection. METHODOLOGY/PRINCIPAL FINDINGS: Landscape genomics can greatly benefit the entire livestock system through the identification of genotypes better adapted to specific or extreme environmental conditions. Therefore we analyzed 101 AFLP markers in 43 European and Western Asian goat breeds both with Matsam software, based on a correlative approach (SAM), and with Mcheza and Bayescan, two FST based software able to detect markers carrying signatures of natural selection. Matsam identified four loci possibly under natural selection--also confirmed by FST-outlier methods--and significantly associated with environmental variables such as diurnal temperature range, frequency of precipitation, relative humidity and solar radiation. CONCLUSIONS/SIGNIFICANCE: These results show that landscape genomics can provide useful information on the environmental factors affecting the adaptive potential of livestock living in specific climatic conditions. Besides adding conservation value to livestock genetic resources, this knowledge may lead to the development of novel molecular tools useful to preserve the adaptive potential of local breeds during genetic improvement programs, and to increase the adaptability of industrial breeds to changing environments.


Subject(s)
Adaptation, Physiological/genetics , Goats/genetics , Amplified Fragment Length Polymorphism Analysis , Animals , Asia, Western , Bayes Theorem , Environment , Europe , Genetic Association Studies , Genetic Loci , Genetic Markers , Models, Genetic , Phylogeography
4.
Recent Pat Food Nutr Agric ; 5(1): 9-18, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23305425

ABSTRACT

This review updates the available molecular techniques and technologies and discusses how they can be used for traceability, food control and enforcement activities. The review also provides examples on how molecular techniques succeeded to trace back unknowns to their breeds of origin, to fingerprint single individuals and to generate evidence in court cases. The examples demonstrate the potential of the DNA based traceability techniques and explore possibilities for translating the next generation genomics tools into a food and feed control and enforcement framework.


Subject(s)
Breeding , DNA Fingerprinting/methods , DNA , Food Analysis/methods , Food Contamination , Food Supply , Meat/analysis , Animals , Diet , Genomics/methods , Humans , Livestock/genetics
5.
J Dairy Res ; 75(4): 430-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18700999

ABSTRACT

We targeted quantitative trait loci (QTL) for milk protein percentage (P%) in two Italian Holstein granddaughter design families using selective genotyping in combination with high throughput amplified fragment length polymorphism (AFLP) markers. A total of 64 extreme high and low sires in respect to estimated breeding value (EBV) for P% (EBVP%) were genotyped with 25 AFLP primer combinations that revealed 305 and 291 polymorphisms in the two families. Association between markers and EBVP% was investigated by a linear model only on bands having paternal origin (105 and 96 AFLP bands in family D and S, respectively). Although no marker was significantly associated with the target trait after correction for multiple comparisons, 17 AFLP markers, significant without correction for multiple tests, were considered suggestive of the presence of a QTL. Eleven of these were successfully located on six Bos taurus (BTA) chromosomes by radiation hybrid or in-silico mapping. Ten of these mapped in the immediate neighbourhood (less than 10 cM) of already described QTL for P%. Suggestive association was verified in four regions by microsatellites analysis: one on BTA 10; one on BTA 28; and two on BTA 18. Microsatellites identified significant effects by single marker and interval mapping analyses on BTA 10 and BTA 28, while they were only suggestive of the presence of QTL on BTA 18. In summary, our results firstly indicate that AFLP markers may be used to seek QTL exploiting a selective genotyping approach in GDD, a wide used experimental design in cattle; secondly, propose two approaches for AFLP mapping, namely in-silico mapping exploiting most updated release from the bovine whole genome sequencing project, and physical mapping exploiting a panel of Bovine/Hamster Radiation Hybrids; and thirdly, provide new information on QTLs for an economic important trait in a never investigated Holstein cattle population. AFLP in combination with selective genotyping can be a useful strategy for QTL searching in minor livestock species, sometimes having large economic impact in marginal areas, where more informative markers are still poorly developed.


Subject(s)
Milk Proteins/genetics , Amplified Fragment Length Polymorphism Analysis/methods , Amplified Fragment Length Polymorphism Analysis/veterinary , Animals , Breeding/methods , Cattle , Chromosome Mapping , DNA Primers/genetics , Female , Genotype , Italy , Microsatellite Repeats/genetics , Phenotype , Quantitative Trait Loci
6.
Theor Appl Genet ; 112(6): 1073-85, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16501940

ABSTRACT

To individuate candidate genes (CGs) for a set of barley developmental mutants, a synteny approach comparing the genomes of barley and rice has been introduced. Based on map positions of mutants, sequenced RFLP markers linked to the target loci were selected. The markers were mapped in silico by BLAST searches against the rice genome sequence and chromosomal regions syntenous to barley target intervals were identified. Rice syntenous regions were defined for 15 barley chromosomal intervals hosting 23 mutant loci affecting plant height (brh1; brh2; sld4), shoot and inflorescence branching (als; brc1; cul-2, -3, -5, -15, -16; dub1; mnd6; vrs1), development of leaves (lig) and leaf-like organs (cal-b19, -C15, -d4; lks5; suKD-25; suKE-74; suKF-76; trd; trp). Annotation of 110 Mb of rice genomic sequence made it possible to screen for putative CGs which are listed together with the reasons supporting mutant-gene associations. For two loci, CGs were identified with a clear probability to represent the locus considered. These include FRIZZY PANICLE, a candidate for the brc1 barley mutant, and the rice ortholog of maize Liguleless1 (Lg1), a candidate for the barley lig locus on chromosome 2H. For this locus, the validity of the approach was supported by the PCR-amplification of a genomic fragment of the orthologous barley sequence. SNP mapping located this fragment on chromosome 2H in the region hosting the lig genetic locus.


Subject(s)
Chromosome Mapping , Computational Biology , Genes, Plant/genetics , Hordeum/genetics , Mutation , Amino Acid Sequence , Genetic Linkage , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...