Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 643: 14-23, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29462588

ABSTRACT

Four heme peroxidase superfamilies arose independently in evolution. Only in the peroxidase-cyclooxygenase superfamily the prosthetic group is posttranslationally modified (PTM). As a consequence these peroxidases can form one, two or three covalent bonds between heme substituents and the protein. This may include ester bonds between heme 1- and 5-methyl groups and glutamate and aspartate residues as well as a sulfonium ion link between the heme 2-vinyl substituent and a methionine. Here the phylogeny and physiological roles of representatives of this superfamily, their occurrence in all kingdoms of life, the relevant sequence motifs for definite identification and the available crystal structures are presented. We demonstrate the autocatalytic posttranslational maturation process and the impact of the covalent links on spectral and redox properties as well as on catalysis, including Compound I formation and reduction by one- and two-electron donors. Finally, we discuss the evolutionary advantage of these PTMs with respect to the proposed physiological functions of the metalloenzymes that range from antimicrobial defence in innate immunity to extracellular matrix formation and hormone biosynthesis.


Subject(s)
Biocatalysis , Heme/metabolism , Peroxidases/chemistry , Peroxidases/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Animals , Conserved Sequence , Humans
2.
J Biol Chem ; 293(4): 1330-1345, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29242189

ABSTRACT

Oxidation of halides and thiocyanate by heme peroxidases to antimicrobial oxidants is an important cornerstone in the innate immune system of mammals. Interestingly, phylogenetic and physiological studies suggest that homologous peroxidases are already present in mycetozoan eukaryotes such as Dictyostelium discoideum This social amoeba kills bacteria via phagocytosis for nutrient acquisition at its single-cell stage and for antibacterial defense at its multicellular stages. Here, we demonstrate that peroxidase A from D. discoideum (DdPoxA) is a stable, monomeric, glycosylated, and secreted heme peroxidase with homology to mammalian peroxidases. The first crystal structure (2.5 Å resolution) of a mycetozoan peroxidase of this superfamily shows the presence of a post-translationally-modified heme with one single covalent ester bond between the 1-methyl heme substituent and Glu-236. The metalloprotein follows the halogenation cycle, whereby compound I oxidizes iodide and thiocyanate at high rates (>108 m-1 s-1) and bromide at very low rates. It is demonstrated that DdPoxA is up-regulated and likely secreted at late multicellular development stages of D. discoideum when migrating slugs differentiate into fruiting bodies that contain persistent spores on top of a cellular stalk. Expression of DdPoxA is shown to restrict bacterial contamination of fruiting bodies. Structure and function of DdPoxA are compared with evolutionary-related mammalian peroxidases in the context of non-specific immune defense.


Subject(s)
Dictyostelium/enzymology , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Catalysis , Dictyostelium/genetics , Heme Oxygenase (Decyclizing)/genetics , Oxidation-Reduction , Protozoan Proteins/genetics , Structure-Activity Relationship
3.
Biochemistry ; 56(34): 4525-4538, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28762722

ABSTRACT

The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/enzymology , Heme/metabolism , Peroxidase/metabolism , Protein Processing, Post-Translational/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Heme/chemistry , Heme/genetics , Ligands , Peroxidase/chemistry , Peroxidase/genetics
4.
Biochemistry ; 55(25): 3528-41, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27293030

ABSTRACT

Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases with an additional posttranslationally formed redox-active Met-Tyr-Trp cofactor that is essential for catalase activity. On the basis of studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide oxidation were proposed. The recent discovery of eukaryotic KatGs with differing pH optima of catalase activity now allows us to scrutinize those postulated reaction mechanisms. In our study, secreted KatG from the fungus Magnaporthe grisea (MagKatG2) was used to analyze the role of a remote KatG-typical mobile arginine that was shown to interact with the Met-Tyr-Trp adduct in a pH-dependent manner in bacterial KatGs. Here we present crystal structures of MagKatG2 at pH 3.0, 5.5, and 7.0 and investigate the mobility of Arg461 by molecular dynamics simulation. Data suggest that at pH ≥4.5 Arg461 mostly interacts with the deprotonated adduct Tyr. Elimination of Arg461 by mutation to Ala slightly increases the thermal stability but does not alter the active site architecture or the kinetics of cyanide binding. However, the variant Arg461Ala lost the wild-type-typical optimum of catalase activity at pH 5.25 (kcat = 6450 s(-1)) but exhibits a broad plateau between pH 4.5 and 7.5 (kcat = 270 s(-1) at pH 5.5). Moreover, significant differences in the kinetics of interconversion of redox intermediates of wild-type and mutant protein mixed with either peroxyacetic acid or hydrogen peroxide are observed. These findings together with published data from bacterial KatGs allow us to propose a role of Arg461 in the H2O2 oxidation reaction of KatG.


Subject(s)
Arginine/chemistry , Bacterial Proteins/metabolism , Hydrogen Peroxide/metabolism , Magnaporthe/enzymology , Peroxidases/metabolism , Arginine/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Calorimetry, Differential Scanning , Catalytic Domain , Circular Dichroism , Crystallography, X-Ray , Hydrogen Peroxide/chemistry , Kinetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation/genetics , Oxidants/metabolism , Oxidation-Reduction , Peroxidases/chemistry , Peroxidases/genetics
5.
Biochemistry ; 54(35): 5425-38, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26290940

ABSTRACT

Recently, it was demonstrated that bifunctional catalase-peroxidases (KatGs) are found not only in archaea and bacteria but also in lower eukaryotes. Structural studies and preliminary biochemical data of the secreted KatG from the rice pathogen Magnaporthe grisea (MagKatG2) suggested both similar and novel features when compared to those of the prokaryotic counterparts studied so far. In this work, we demonstrate the role of the autocatalytically formed redox-active Trp140-Tyr273-Met299 adduct of MagKatG2 in (i) the maintenance of the active site architecture, (ii) the catalysis of hydrogen peroxide dismutation, and (iii) the protein stability by comparing wild-type MagKatG2 with the single mutants Trp140Phe, Tyr273Phe, and Met299Ala. The impact of disruption of the covalent bonds between the adduct residues on the spectral signatures and heme cavity architecture was small. By contrast, loss of its integrity converts bifunctional MagKatG2 to a monofunctional peroxidase of significantly reduced thermal stability. It increases the accessibility of ligands due to the increased flexibility of the KatG-typical large loop 1 (LL1), which contributes to the substrate access channel and anchors at the adduct Tyr. We discuss these data with respect to those known from prokaryotic KatGs and in addition present a high-resolution structure of an oxoiron compound of MagKatG2.


Subject(s)
Catalase/metabolism , Eukaryotic Cells/metabolism , Hydrogen Peroxide/metabolism , Peroxidase/metabolism , Catalase/chemistry , Catalysis , Magnaporthe/metabolism , Methionine/chemistry , Methionine/metabolism , Peroxidase/chemistry , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Substrate Specificity , Tryptamines/chemistry , Tryptamines/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
6.
Arch Biochem Biophys ; 574: 108-19, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25575902

ABSTRACT

Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.


Subject(s)
Biological Evolution , Peroxidases/metabolism , Catalase/metabolism , Heme , Models, Molecular , Peroxidases/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Protein Conformation
7.
J Biol Chem ; 289(45): 31480-91, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25246525

ABSTRACT

The most striking feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO) is the existence of covalent bonds between the prosthetic group and the protein, which has a strong impact on their (electronic) structure and biophysical and chemical properties. Recently, a novel bacterial heme peroxidase with high structural and functional similarities to LPO was described. Being released from Escherichia coli, it contains mainly heme b, which can be autocatalytically modified and covalently bound to the protein by incubation with hydrogen peroxide. In the present study, we investigated the reactivity of these two forms in their ferric, compound I and compound II state in a multi-mixing stopped-flow study. Upon heme modification, the reactions between the ferric proteins with cyanide or H2O2 were accelerated. Moreover, apparent bimolecular rate constants of the reaction of compound I with iodide, thiocyanate, bromide, and tyrosine increased significantly and became similar to LPO. Kinetic data are discussed and compared with known structure-function relationships of the mammalian peroxidases LPO and myeloperoxidase.


Subject(s)
Escherichia coli/enzymology , Heme/chemistry , Peroxidase/chemistry , Peroxidases/chemistry , Bromides/chemistry , Catalysis , Cyanides/chemistry , Electrons , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Iodides/chemistry , Iron/chemistry , Lactoperoxidase/chemistry , Models, Chemical , Oxidation-Reduction , Oxygen/chemistry , Protein Binding , Protein Processing, Post-Translational , Spectrophotometry , Thiocyanates/chemistry , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...