Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 36(8): 109616, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433061

ABSTRACT

Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.


Subject(s)
Cytoskeleton/metabolism , Fibronectins/metabolism , Integrins/metabolism , Neovascularization, Physiologic/physiology , Angiomotins/metabolism , Animals , Cell Membrane/metabolism , Cell Movement/physiology , Endothelium/metabolism , Mice, Transgenic , Plasma Substitutes/pharmacology , Pseudopodia/metabolism
2.
ACS Nano ; 11(7): 7110-7117, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28699736

ABSTRACT

Fibronectin (Fn) is an extracellular matrix protein that orchestrates complex cell adhesion and signaling through cell surface integrin receptors during tissue development, remodeling, and disease, such as fibrosis. Fn is sensitive to mechanical forces in its tandem type III repeats, resulting in extensive molecular enlongation. As such, it has long been hypothesized that cell- and tissue-derived forces may activate an "integrin switch" within the critical integrin-binding ninth and 10th type III repeats-conferring differential integrin-binding specificity, leading to differential cell responses. Yet, no direct evidence exists to prove the hypothesis nor demonstrate the physiological existence of the switch. We report direct experimental evidence for the Fn integrin switch both in vitro and ex vivo using a scFv engineered to detect the transient, force-induced conformational change, representing an opportunity for detection and targeting of early molecular signatures of cell contractile forces in tissue repair and disease.


Subject(s)
Fibronectins/metabolism , Integrins/metabolism , Lung/pathology , Animals , Biomechanical Phenomena , Cell Adhesion , Extracellular Matrix/metabolism , Fibronectins/analysis , Fibrosis , Integrins/analysis , Lung/metabolism , Mice , Neovascularization, Physiologic , Protein Binding
3.
Adv Wound Care (New Rochelle) ; 4(8): 501-511, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26244106

ABSTRACT

Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin-Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...