Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6643): 410-415, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37104586

ABSTRACT

Type VI CRISPR-Cas systems use RNA-guided ribonuclease (RNase) Cas13 to defend bacteria against viruses, and some of these systems encode putative membrane proteins that have unclear roles in Cas13-mediated defense. We show that Csx28, of type VI-B2 systems, is a transmembrane protein that assists to slow cellular metabolism upon viral infection, increasing antiviral defense. High-resolution cryo-electron microscopy reveals that Csx28 forms an octameric pore-like structure. These Csx28 pores localize to the inner membrane in vivo. Csx28's antiviral activity in vivo requires sequence-specific cleavage of viral messenger RNAs by Cas13b, which subsequently results in membrane depolarization, slowed metabolism, and inhibition of sustained viral infection. Our work suggests a mechanism by which Csx28 acts as a downstream, Cas13b-dependent effector protein that uses membrane perturbation as an antiviral defense strategy.


Subject(s)
Bacterial Proteins , Bacteriophages , CRISPR-Associated Proteins , CRISPR-Cas Systems , Endodeoxyribonucleases , Prevotella , RNA Cleavage , RNA, Viral , Cryoelectron Microscopy , Membrane Proteins/metabolism , RNA, Viral/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , Bacteriophages/metabolism , Bacteriophage lambda/metabolism , Escherichia coli/enzymology , Escherichia coli/virology , Prevotella/enzymology , Prevotella/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...