Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 336(2): 336-43, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20978169

ABSTRACT

During a phase I trial of EC145 (a folate-targeted vinca alkaloid conjugate), constipation was identified as the dose-limiting toxicity, probably from a nonfolate receptor-related liver clearance process capable of releasing unconjugated vinca alkaloid from EC145 and shuttling it to the bile. Here, we report on the selective placement of novel carbohydrate segments (1-amino-1-deoxy-glucitolyl-γ-glutamate) spaced in-between the folate and vinca alkaloid moieties of EC145, which yielded a new agent (EC0489) that is equipotent but less toxic than EC145. Whereas both compounds could cure tumor-bearing mice reproducibly, EC0489 differed from EC145 with i) a shorter elimination half-life, ii) approximately 70% decrease in bile clearance, iii) a 4-fold increase in urinary excretion, and iv) improved tolerability in rodents. This combination of improvements justified the clinical evaluation of EC0489 where currently administered dose levels have exceeded the maximal tolerated dose of EC145 by approximately 70%, thereby reflecting the translational benefits to this new approach.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Folic Acid/analogs & derivatives , Liver/metabolism , Vinca Alkaloids/pharmacokinetics , Animals , Antineoplastic Agents/toxicity , Dose-Response Relationship, Drug , Drug Discovery , Female , Folate Receptors, GPI-Anchored/physiology , Folic Acid/pharmacokinetics , Folic Acid/toxicity , Kidney/metabolism , Male , Metabolic Clearance Rate , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Vinca Alkaloids/toxicity
2.
Mol Pharm ; 6(5): 1518-25, 2009.
Article in English | MEDLINE | ID: mdl-19630399

ABSTRACT

Herein we report on the potencies of 4 related folate-conjugated tubulysins constructed with either tubulysin B hydrazide (EC0305), tubulysin A hydrazide (EC0510), the N,O-acetal derivative of natural tubulysins (EC0317) or a tubulysin B ester (EC0302). Our results confirmed that EC0305 is the most favorable conjugate of the group due to its potent antitumor activity [100% cures at 1 micromol/kg, three times a week (TIW) for 2 weeks] and its favorably low toxicity profile. In contrast, the natural tubulysin B drug proved to be inactive against a human nasopharyngeal tumor model when administered at doses near to or greater than the maximum tolerated dose (MTD). When tested against more chemoresistant folate receptor expressing M109 and 4T1-cl2 tumors, EC0305 displayed superior antitumor activity over a previously disclosed folate conjugate of desacetylvinblastine monohydrazide (EC145). These studies demonstrate that EC0305 has significant antiproliferative activity against FR expressing tumors, including those which are generally more chemoresistant, and that EC0305 should be considered for development as a candidate for the treatment of advanced FR-expressing human cancers.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Folic Acid/analogs & derivatives , Oligopeptides/chemistry , Oligopeptides/pharmacology , Animals , Antineoplastic Agents/toxicity , Blood Proteins/metabolism , Carrier Proteins/metabolism , Cattle , Cell Line, Tumor , Dogs , Female , Folate Receptors, GPI-Anchored , Folic Acid/chemistry , Folic Acid/pharmacology , Humans , In Vitro Techniques , Mice , Mice, Inbred BALB C , Mice, Nude , Oligopeptides/toxicity , Protein Binding , Rabbits , Rats , Receptors, Cell Surface/metabolism , Structure-Activity Relationship
3.
Int J Cancer ; 121(7): 1585-92, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17551919

ABSTRACT

EC140 is a water soluble folate conjugate of desacetylvinblastine monohydrazide (DAVLBH), which is constructed with an endosome-cleavable acyl hydrazone bond. This agent has proven to be active and specific against well established, subcutaneous folate receptor (FR)-positive tumors in multiple animal models. Recent structure-activity and optimization studies have yielded a disulfide bond-containing counterpart to EC140, herein referred to as EC145. This new conjugate was found to retain high affinity for FR-positive cells, and it produced specific, dose-responsive activity in vitro. Comparative in vivo efficacy tests confirmed that, like EC140, EC145 displays activity against both syngeneic and xenograft tumor models. However, EC145 was found to be more active and better tolerated than EC140; hence, more durable complete responses were consistently observed in EC145-treated tumor-bearing animals. Furthermore, EC145 was not found to be active against a FR-negative tumor model. Additional preclinical studies are therefore warranted to better understand EC145's breadth of activity against FR-positive tumors.


Subject(s)
Folic Acid/analogs & derivatives , Neoplasms, Experimental/prevention & control , Pterins/pharmacology , Vinca Alkaloids/pharmacology , Xenograft Model Antitumor Assays , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/prevention & control , Animals , Binding, Competitive , Blood Proteins/metabolism , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor/methods , Folate Receptors, GPI-Anchored , Folic Acid/chemistry , Folic Acid/pharmacology , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/prevention & control , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Binding , Pterins/chemistry , Pterins/metabolism , Receptors, Cell Surface/metabolism , Time Factors , Tumor Burden , Vinca Alkaloids/chemistry , Vinca Alkaloids/metabolism
4.
Bioconjug Chem ; 16(4): 803-11, 2005.
Article in English | MEDLINE | ID: mdl-16029021

ABSTRACT

A novel folate conjugate of mitomycin C, herein referred to as EC72, was designed and evaluated for biological activity against FR-positive cells and tumors. EC72 was produced by coupling folic acid-gamma-cysteine to 7-N-modified MMC via a disulfide bond. This water soluble conjugate was found to retain high affinity for FR-positive cells, and it produced dose responsive activity in vitro against a panel of folate receptor (FR)-positive cell lines. EC72's activity was considered to be targeted and specific for the FR since (i) excess folic acid blocked biological activity, and (ii) FR-negative cell lines were unresponsive to this drug. Initial in vivo tests confirmed EC72's activity in both syngeneic and xenograft models, and this activity occurred in the apparent absence of gross or pathological toxicity. These results are significant, since daily dosing of EC72 for more than 30 consecutive days yielded no evidence of myelosuppression or toxicity to major organs, including the FR-positive kidneys. The latter observation supports published data, indicating that the apically oriented kidney proximal tubule FRs function to salvage folates prior to their excretion and to return these molecules back into systemic circulation. Overall, EC72's performance in vitro and in vivo warrants further preclinical study before this novel targeted chemotherapeutic is considered for clinical investigation.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Folic Acid/analogs & derivatives , Folic Acid/chemistry , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/toxicity , Cell Line , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Female , Folic Acid/blood , Folic Acid/chemical synthesis , Folic Acid/pharmacology , Humans , Kinetics , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred BALB C
5.
Chem Res Toxicol ; 18(3): 501-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15777090

ABSTRACT

The reactions of aqueous ClO2 with tyrosine, N-acetyltyrosine, and dopa (3,4-dihydroxyphenylalanine) are investigated from pH 4 to 7. The reaction rates increase greatly with pH to give a series of oxidized products. Tyrosine and N-acetyltyrosine have similar reactivities with second-order rate constants (25.0 degrees C) for their phenoxide forms equal to 1.8x10(8) and 7.6x10(7) M-1 s-1, respectively. Both species generate phenoxyl radicals that react rapidly with a second ClO2 at the 3 position to give observable but short-lived adducts with proposed C(H)OClO bonding. The decay of these phenoxyl-ClO2 adducts also is rapid and is base-assisted to form dopaquinone (from tyrosine) and N-acetyldopaquinone (from N-acetyltyrosine) as initial products. The consumption of two ClO2 molecules corresponds to a four-electron oxidation that gives ClO2- in the first step and HOCl in the second step. The reaction between ClO2 and the deprotoned-catechol form of dopa is extremely fast (2.8x10(9) M-1 s-1). Dopa consumes two ClO2 to give dopaquinone and 2ClO2- as products. Above pH 4, dopaquinone cyclizes to give cyclodopa, which in turn is rapidly oxidized to dopachrome. A resolved first-order rate constant of 249 s-1 is evaluated for the cyclization of the basic form of dopaquinone that leads to dopachrome as a product with strong absorption bands at 305 and 485 nm.


Subject(s)
Chlorine Compounds/chemistry , Dihydroxyphenylalanine/chemistry , Oxides/chemistry , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Chromatography, High Pressure Liquid , Oxidation-Reduction , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet
6.
Inorg Chem ; 43(23): 7412-20, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15530092

ABSTRACT

Chloride ion catalyzes the reactions of HOBr with bromite and chlorite ions in phosphate buffer (p[H(+)] 5 to 7). Bromine chloride is generated in situ in small equilibrium concentrations by the addition of excess Cl(-) to HOBr. In the BrCl/ClO(2)(-) reaction, where ClO(2)(-) is in excess, a first-order rate of formation of ClO(2) is observed that depends on the HOBr concentration. The rate dependencies on ClO(2)(-), Cl(-), H(+), and buffer concentrations are determined. In the BrCl/BrO(2)(-) reaction where BrCl is in pre-equilibrium with the excess species, HOBr, the loss of absorbance due to BrO(2)(-) is followed. The dependencies on Cl(-), HOBr, H(+), and HPO(4)(2)(-) concentrations are determined for the BrCl/BrO(2)(-) reaction. In the proposed mechanisms, the BrCl/ClO(2)(-) and BrCl/BrO(2)(-) reactions proceed by Br(+) transfer to form steady-state levels of BrOClO and BrOBrO, respectively. The rate constant for the BrCl/ClO(2)(-) reaction [k(Cl)(2)]is 5.2 x 10(6) M(-1) s(-1) and for the BrCl/BrO(2)(-) reaction [k(Br)(2)]is 1.9 x 10(5) M(-1) s(-1). In the BrCl/ClO(2)(-) case, BrOClO reacts with ClO(2)(-) to form two ClO(2) radicals and Br(-). However, the hydrolysis of BrOBrO in the BrCl/BrO(2)(-) reaction leads to the formation of BrO(3)(-) and Br(-).

7.
Inorg Chem ; 42(24): 7938-44, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14632511

ABSTRACT

The reaction of chlorine dioxide with excess NO(2)(-) to form ClO(2)(-) and NO(3)(-) in the presence of a large concentration of ClO(2)(-) is followed via stopped-flow spectroscopy. Concentrations are set to establish a preequilibrium among ClO(2), NO(2)(-), ClO(2)(-), and an intermediate, NO(2). Studies are conducted at pH 12.0 to avoid complications due to the ClO(2)(-)/NO(2)(-) reaction. These conditions enable the kinetic study of the ClO(2) reaction with nitrogen dioxide as well as the NO(2) disproportionation reaction. The rate of the NO(2)/ClO(2) electron-transfer reaction is accelerated by different nucleophiles (NO(2)(-) > Br(-) > OH(-) > CO(3)(2-) > PO(4)(3-) > ClO(2)(-) > H(2)O). The third-order rate constants for the nucleophile-assisted reactions between NO(2) and ClO(2) (k(Nu), M(-2) s(-1)) at 25.0 degrees C vary from 4.4 x 10(6) for NO(2-) to 2.0 x 10(3) when H(2)O is the nucleophile. The nucleophile is found to associate with NO(2) and not with ClO(2) in the rate-determining step to give NuNO(2)(+) + ClO(2)(-). The concurrent NO(2) disproportionation reaction exhibits no nucleophilic effect and has a rate constant of 4.8 x 10(7) M(-1) s(-1). The ClO(2)/NO(2)/nucleophile reaction is another example of a system that exhibits general nucleophilic acceleration of electron transfer. This system also represents an alternative way to study the rate of NO(2) disproportionation.

8.
Inorg Chem ; 42(19): 5818-24, 2003 Sep 22.
Article in English | MEDLINE | ID: mdl-12971749

ABSTRACT

The reaction between BrO2(-) and excess HOCl (p[H+] 6-7, 25.0 degrees C) proceeds through several pathways. The primary path is a multistep oxidation of HOCl by BrO(2)(-) to form ClO(3)(-) and HOBr (85% of the initial 0.15 mM BrO(2)(-)). Another pathway produces ClO(2) and HOBr (8%), and a third pathway produces BrO(3)(-) and Cl(-) (7%). With excess HOCl concentrations, Cl(2)O also is a reactive species. In the proposed mechanism, HOCl and Cl(2)O react with BrO(2)(-) to form steady-state species, HOClOBrO(-) and ClOClOBrO(-). Acid facilitates the conversion of HOClOBrO(-) and ClOClOBrO(-) to HOBrOClO(-). These reactions require a chainlike connectivity of the intermediates with alternating halogen-oxygen bonding (i.e. HOBrOClO(-)) as opposed to Y-shaped intermediates with a direct halogen-halogen bond (i.e. HOBrCl(O)O(-)). The HOBrOClO(-) species dissociates into HOBr and ClO(2)(-) or reacts with general acids to form BrOClO. The distribution of products suggests that BrOClO exists as a BrOClO.HOCl adduct in the presence of excess HOCl. The primary products, ClO(3)(-) and HOBr, are formed from the hydrolysis of BrOClO.HOCl. A minor hydrolysis path for BrOClO.HOCl gives BrO(3)(-) and Cl(-). An induction period in the formation of ClO(2) is observed due to the buildup of ClO(2)(-), which reacts with BrOClO.HOCl to give 2 ClO(2) and Br(-). Second-order rate constants for the reactions of HOCl and Cl(2)O with BrO(2)(-) are k(1)(HOCl) = 1.6 x 10(2) M(-1) s(-1) and k(1)(Cl)()2(O) = 1.8 x 10(5) M(-)(1) s(-)(1). When Cl(-) is added in large excess, a Cl(2) pathway exists in competition with the HOCl and Cl(2)O pathways for the loss of BrO(2)(-). The proposed Cl(2) pathway proceeds by Cl(+) transfer to form a steady-state ClOBrO species with a rate constant of k(1)(Cl2) = 8.7 x 10(5) M(-1) s(-1).

9.
Inorg Chem ; 42(1): 78-87, 2003 Jan 13.
Article in English | MEDLINE | ID: mdl-12513080

ABSTRACT

The reaction of bromite with aqueous S(IV) is first order in both reactants and is general-acid catalyzed. The reaction half-lives vary from 5 ms (p[H+] 5.9) to 210 s (p[H+] 13.1) for 0.7 mM excess S(IV) at 25 degrees C. The proposed mechanism includes a rapid reaction (k(1) = 3.0 x 10(7) M(-1) s(-1)) between BrO(2)(-) and SO(3)(2-) to form a steady-state intermediate, (O(2)BrSO(3))(3-). General acids assist the removal of an oxide ion from (O(2)BrSO(3))(3-) to form OBrSO(3)(-), which hydrolyzes rapidly to give OBr(-) and SO(4)(2-). Subsequent fast reactions between HOBr/OBr(-) and SO(3)(2-) give Br(-) and SO(4)(2-) as final products. In contrast, the chlorite reactions with S(IV) are 5-6 orders of magnitude slower. These reactions are specific-acid, not general-acid, catalyzed. In the proposed mechanism, ClO(2)(-) and SO(3)H(-)/SO(2) react to form (OClOSO(3)H)(2)(-) and (OClOSO(2))(-) intermediates which decompose to form OCl(-) and SO(4)(2-). Subsequent fast reactions between HOCl/OCl(-) and S(IV) give Cl- and SO(4)(2-) as final products. SO(2) is 6 orders of magnitude more reactive than SO(3)H-, where k(5)(SO(2)/ClO(2)(-)) = 6.26 x 10(6) M(-1) s(-1) and k(6)(SO(3)H(-)/ClO(2)(-)) = 5.5 M(-1) s(-1). Direct reaction between ClO(2)(-) and SO(3)(2-) is not observed. The presence or absence of general-acid catalysis leads to the proposal of different connectivities for the initial reactive intermediates, where a Br-S bond forms with BrO(2)(-) and SO(3)(2-), while an O-S bond forms with ClO(2)(-) and SO(3)H-.

10.
Inorg Chem ; 41(11): 2975-80, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12033908

ABSTRACT

Ozone reactions with XO(2)(-) (X = Cl or Br) are studied by stopped-flow spectroscopy under pseudo-first-order conditions with excess XO(2)(-). The O(3)/XO(2)(-) reactions are first-order in [O(3)] and [XO(2)(-)], with rate constants k(1)(Cl) = 8.2(4) x 10(6) M(-1) s(-1) and k(1)(Br) = 8.9(3) x 10(4) M(-1) s(-1) at 25.0 degrees C and mu = 1.0 M. The proposed rate-determining step is an electron transfer from XO(2)(-) to O(3) to form XO(2) and O(3)(-). Subsequent rapid reactions of O(3)(-) with general acids produce O(2) and OH. The OH radical reacts rapidly with XO(2)(-) to form a second XO(2) and OH(-). In the O(3)/ClO(2)(-) reaction, ClO(2) and ClO(3)(-) are the final products due to competition between the OH/ClO(2)(-) reaction to form ClO(2) and the OH/ClO(2) reaction to form ClO(3)(-). Unlike ClO(2), BrO(2) is not a stable product due to its rapid disproportionation to form BrO(2)(-) and BrO(3)(-). However, kinetic spectra show that small but observable concentrations of BrO(2) form within the dead time of the stopped-flow instrument. Bromine dioxide is a transitory intermediate, and its observed rate of decay is equal to half the rate of the O(3)/BrO(2)(-) reaction. Ion chromatographic analysis shows that O(3) and BrO(2)(-) react in a 1/1 ratio to form BrO(3)(-) as the final product. Variation of k(1)(X) values with temperature gives Delta H(++)(Cl) = 29(2) kJ mol(-1), DeltaS(++)(Cl) = -14.6(7) J mol(-1) K(-1), Delta H(++)(Br) = 54.9(8) kJ mol(-1), and Delta S(++)(Br) = 34(3) J mol(-1) K(-1). The positive Delta S(++)(Br) value is attributed to the loss of coordinated H(2)O from BrO(2)(-) upon formation of an [O(3)BrO(2)(-)](++) activated complex.

11.
Inorg Chem ; 41(1): 108-13, 2002 Jan 14.
Article in English | MEDLINE | ID: mdl-11782148

ABSTRACT

The rate of ClO(2) conversion to ClO(2)(-) and ClO(3)(-) is accelerated by BrO(2)(-), repressed by ClO(2)(-), and greatly assisted by many nucleophiles (Br(-) > PO(4)(3-) > HPO(4)(2-) > CO(3)(2-) > Cl(-) approximately OH(-) > CH(3)COO(-) approximately SO(4)(2-) approximately C(5)H(5)N >> H(2)O). The kinetics (at p[H(+)] = 9.3-12.9) show that the first step of the mechanism is an electron transfer between ClO(2) and BrO(2)(-) (k(1) = 36 M(-1) s(-1)) to give ClO(2)(-) and BrO(2). This highly reversible reaction (k(1)/k(-1) = 1 x 10(-6)) accounts for the observed inhibition by ClO(2)(-). The second step is an electron transfer between ClO(2) and BrO(2) to regenerate BrO(2)(-) and form ClO(3)(-). A novel aspect of the second step is the large kinetic contribution from nucleophiles (k(Nu)) that assist the electron transfer between ClO(2) and BrO(2). The k(Nu) (M(-2) s(-1)) values at 25.0 degrees C vary from 2.89 x 10(8) for Br(-) to 2.0 x 10(4) for H(2)O.

12.
Inorg Chem ; 41(2): 342-7, 2002 Jan 28.
Article in English | MEDLINE | ID: mdl-11800623

ABSTRACT

The kinetics and mechanism of the reaction between Cl(2) and ClO(2)(-) are studied in acetate buffer by stopped-flow spectrometric observation of ClO(2) formation. The reaction is first-order in [Cl(2)] and [ClO(2)(-)], with a rate constant of k(1) = (5.7 +/- 0.2) x 10(5) M(-)(1) s(-)(1) at 25.0 degrees C. Nucleophilic attack by ClO(2)(-) on Cl(2), with Cl(+) transfer to form ClOClO and Cl(-), is proposed as the rate-determining step. A possible two-step electron-transfer mechanism for Cl(2) and ClO(2)(-) is refuted by the lack of ClO(2) suppression. The yield of ClO(2) is much less than 100%, due to the rapid reactions of the metastable ClOClO intermediate via two competing pathways. In one path, ClOClO reacts with ClO(2)(-) to form 2ClO(2) and Cl(-), while in the other path it hydrolyzes to give ClO(3)(-) and Cl(-). The observed rate constant also is affected by acetate-assisted hydrolysis of Cl(2). The rate of Cl(2) loss is suppressed as the concentration of Cl(-) increases, due to the formation of Cl(3)(-). In excess ClO(2)(-), a much slower formation of ClO(2) is observed after the initial Cl(2) reaction, due to the presence of HOCl, which reacts with H(+) and Cl(-) to re-form steady-state levels of Cl(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...