Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 190: 179-201, 2022 09.
Article in English | MEDLINE | ID: mdl-35964840

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease with an important inflammatory component accompanied by deregulated redox-dependent signaling pathways that are feeding back into inflammation. In this context, we bring into focus the transcription factor NRF2, a master redox regulator that exerts exquisite antioxidant and anti-inflammatory effects. The review does not intend to be exhaustive, but to point out arguments sustaining the rationale for applying an NRF2-directed co-treatment in RA as well as its potential limitations. The involvement of NRF2 in RA is emphasized through an analysis of publicly available transcriptomic data on NRF2 target genes and the findings from NRF2-knockout mice. The impact of NRF2 on concurrent pathologic mechanisms in RA is explained by its crosstalk with major redox-sensitive inflammatory and cell death-related pathways, in the context of the increased survival of pathologic cells in RA. The proposed adjunctive therapy targeted to NRF2 is further sustained by the existence of promising NRF2 activators that are in various stages of drug development. The interference of NRF2 with conventional anti-rheumatic therapies is discussed, including the cytoprotective effects of NRF2 for alleviating drug toxicity. From another perspective, the review presents how NRF2 activation would be decreasing the efficacy of synthetic anti-rheumatic drugs by increasing drug efflux. Future perspectives regarding pharmacologic NRF2 activation in RA are finally proposed.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Animals , Antioxidants/therapeutic use , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Mice , Mice, Knockout , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction
2.
Front Genet ; 10: 680, 2019.
Article in English | MEDLINE | ID: mdl-31379931

ABSTRACT

CD36 is a transmembrane protein involved in fatty acid translocation, scavenging for oxidized fatty acids acting as a receptor for adhesion molecules. It is expressed on macrophages, as well as other types of cells, such as endothelial and adipose cells. CD36 participates in muscle lipid uptake, adipose energy storage, and gut fat absorption. Recently, several preclinical and clinical studies demonstrated that upregulation of CD36 is a prerequisite for tumor metastasis. Cancer metastasis-related research emerged much later and has been less investigated, though it is equally or even more important. CD36 protein expression can be modified by epigenetic changes and post-transcriptional interference from non-coding RNAs. Some data indicate modulation of CD36 expression in specific cell types by epigenetic changes via DNA methylation patterns or histone tails, or through miRNA interference, but this is largely unexplored. The few papers addressing this topic refer mostly to lipid metabolism-related pathologies, whereas in cancer research, data are even more scarce. The aim of this review was to summarize major epigenetic and post-transcriptional mechanisms that impact CD36 expression in relation to various pathologies while highlighting the areas in need of further exploration.

3.
Molecules ; 20(12): 22170-87, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26690401

ABSTRACT

There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.


Subject(s)
Amino Acids/chemistry , Antineoplastic Agents/chemistry , Helleborus/chemistry , Plant Proteins/chemistry , Thionins/chemistry , Amino Acids/isolation & purification , Amino Acids/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Butanols , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Ethanol , Ethylene Dichlorides , HeLa Cells , Humans , Plant Extracts/chemistry , Plant Proteins/isolation & purification , Plant Proteins/pharmacology , Solvents , Thionins/isolation & purification , Thionins/pharmacology
4.
Mol Cell Biochem ; 398(1-2): 157-64, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25240414

ABSTRACT

Telocytes (TC) are cells with telopodes (Tp), very long prolongations (up to 100 µm) with an uneven caliber ( www.telocytes.com ). Factors determining the dynamics of cellular prolongations are still unknown, although previous studies showed telopode motility in TC cultures. We comparatively investigated, by time-lapse videomicroscopy, the dynamics of Tp of mouse heart TC seeded on collagen, fibronectin, and laminin. Under our experimental conditions, TC and fibroblasts (cell line L929) behaved differently in terms of adherence, spreading, and prolongation extension. Fibroblasts showed lower spreading on the matrix proteins used. The time needed for spreading was 2-4 h for TC, versus 8-10 h for fibroblasts. The values for final cell surface area after spreading were between 200 and 400 µm(2) for fibroblasts and 800-2,000 µm(2) for TC. TC showed a more than three times higher ability to spread on the tested matrix proteins. An extremely low capacity to extend prolongations with lengths shorter than cell bodies was noted for fibroblasts, while TC extended prolongations longer than the cell body length, with a moniliform appearance. The stronger adherence and spreading were noted for TC seeded on fibronectin, while the lowest were on laminin. Collagen determined an intermediate adherence and spreading for TC, but the highest dynamics in Tp extensions. In conclusion, TC behave differently than fibroblasts in terms of adherence, spreading, and cell prolongation extension when seeded on various matrix proteins in cell culture.


Subject(s)
Extracellular Matrix Proteins/metabolism , Fibroblasts/physiology , Telocytes/physiology , Telopodes/physiology , Animals , Cell Adhesion/physiology , Cell Culture Techniques , Cell Line , Cell Movement/physiology , Cells, Cultured , Collagen/metabolism , Fibroblasts/cytology , Fibronectins/metabolism , Kinetics , Laminin/metabolism , Mice , Microscopy, Electron, Transmission , Microscopy, Video/methods , Myocardium/cytology , Telocytes/cytology , Telocytes/ultrastructure , Time-Lapse Imaging/methods
5.
Discoveries (Craiova) ; 2(3): e29, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-32309556

ABSTRACT

Most, if not all, cells in the organism, at least in some period of their lifetime, secrete materials that are produced within the cell. Cell secretion is a phenomenon requiring membrane fusion at a specialized plasma membrane structure called the 'porosome,' which allows the material stored within secretory vesicles to be delivered to the cell's exterior environment. This is achieved when the secretory vesicles fuse at the base of the porosome complex, establishing a fusion pore or fluid continuity between the vesicle interior and the cell's exterior. Besides cell secretion, membrane fusion is necessary for intracellular membrane traffic and vesicular transport from one endomembrane bound structure to another. In addition to cell secretion, membrane fusion is necessary for intracellular membrane trafficking and vesicle transport from one intracellular membrane to another. We suggest that the debate about whether to use the term 'porosome' or 'fusion pore' to describe this process is unnecessary, since both of these terms are useful in describing aspects of the last event of cell secretion, namely exocytosis. In this review, we will summarize the information related to the discovery of the porosome, a universal secretory portal for exocytosis, and discuss porosome molecular organization and function. Finally, we will develop the notion that the porosome is a specialized plasma membrane microdomain.

SELECTION OF CITATIONS
SEARCH DETAIL
...