Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-487103

ABSTRACT

The high transmissibility and infectivity of a SARS-CoV-2 variant is usually ascribed to the Spike mutations, while emerging non-spike mutations might be a serious threat to the current Spike-recombinant vaccines. In addition to mutations in structural Spike glycoprotein, rapid accumulation of mutations across non-structural genes is leading to continuous virus evolution, altering its pathogenicity. We performed whole genome sequencing of SARS-CoV-2 positive samples collected from different clinical groups from eastern India, during the second pandemic wave (April-May, 2021). In addition to the several common spike mutations in Delta variant, two mutually explicit signature constellations of non-spike co-appearing mutations were identified, driving symptomatic and asymptomatic infections. We attempted to correlate these unique signatures of non-Spike co-appearing mutations to COVID-19 disease outcome. Results revealed that the Delta strains harboring a unique constellation of 9 non-spike co-appearing mutations could be the wheeler and dealer of symptomatic infection, even post vaccination. The strains predominantly driving asymptomatic infection possessed 7 non-spike co-appearing mutations, which were mutually exclusive in contrast to the set of mutations causing symptomatic disease. Phylodynamic analysis depicted high probability of emergence of these unique sub-clusters within India, with subsequent spread worldwide. Interestingly, some mutations of this signature were selected in Omicron and IHU variants, which suggest that gradual accumulation of such co-existing mutations may lead to emergence of more "vaccine-evading variants" in future. Hence, unfaltering genome sequencing and tracking of non-Spike mutations might be significant in formulation of any future vaccines against emerging SARS-CoV-2 variants that might evade the current vaccine-induced immunity.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-233718

ABSTRACT

The PAN-INDIA 1000 SARS-CoV-2 RNA Genome Sequencing Consortium has achieved its initial goal of completing the sequencing of 1000 SARS-CoV-2 genomes from nasopharyngeal and oropharyngeal swabs collected from individuals testing positive for COVID-19 by Real Time PCR. The samples were collected across 10 states covering different zones within India. Given the importance of this information for public health response initiatives investigating transmission of COVID-19, the sequence data is being released in GISAID database. This information will improve our understanding on how the virus is spreading, ultimately helping to interrupt the transmission chains, prevent new cases of infection, and provide impetus to research on intervention measures. This will also provide us with information on evolution of the virus, genetic predisposition (if any) and adaptation to human hosts. One thousand and fifty two sequences were used for phylodynamic, temporal and geographic mutation patterns and haplotype network analyses. Initial results indicate that multiple lineages of SARS-CoV-2 are circulating in India, probably introduced by travel from Europe, USA and East Asia. A2a (20A/B/C) was found to be predominant, along with few parental haplotypes 19A/B. In particular, there is a predominance of the D614G mutation, which is found to be emerging in almost all regions of the country. Additionally, mutations in important regions of the viral genome with significant geographical clustering have also been observed. The temporal haplotype diversities landscape in each region appears to be similar pan India, with haplotype diversities peaking between March-May, while by June A2a (20A/B/C) emerged as the predominant one. Within haplotypes, different states appear to have different proportions. Temporal and geographic patterns in the sequences obtained reveal interesting clustering of mutations. Some mutations are present at particularly high frequencies in one state as compared to others. The negative estimate Tajimas D (D = -2.26817) is consistent with the rapid expansion of SARS-CoV-2 population in India. Detailed mutational analysis across India to understand the gradual emergence of mutants at different regions of the country and its possible implication will help in better disease management.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-075911

ABSTRACT

COVID-19 pandemic is a major human tragedy. Worldwide, SARS-CoV-2 has already infected over 3 million and has killed about 230,000 people. SARS-CoV-2 originated in China and, within three months, has evolved to an additional 10 subtypes. One particular subtype with a non-silent (Aspartate to Glycine) mutation at 614th position of the Spike protein (D614G) rapidly outcompeted other pre-existing subtypes, including the ancestral. We assessed that D614G mutation generates an additional serine protease (Elastase) cleavage site near the S1-S2 junction of the Spike protein. We also identified that a single nucleotide deletion (delC) at a known variant site (rs35074065) in a cis-eQTL of TMPRSS2, is extremely rare in East Asians but is common in Europeans and North Americans. The delC allele facilitates entry of the 614G subtype into host cells, thus accelerating the spread of 614G subtype in Europe and North America where the delC allele is common. The delC allele at the cis-eQTL locus rs35074065 of TMPRSS2 leads to overexpression of both TMPRSS2 and a nearby gene MX1. The cis-eQTL site, rs35074065 overlaps with a transcription factor binding site of an activator (IRF1) and a repressor (IRF2). IRF1 activator can bind to variant delC allele, but IRF2 repressor fails to bind. Thus, in an individual carrying the delC allele, there is only activation, but no repression. On viral entry, IRF1 mediated upregulation of MX1 leads to neutrophil infiltration and processing of 614G mutated Spike protein by neutrophil Elastase. The simultaneous processing of 614G spike protein by TMPRSS2 and Elastase serine proteases facilitates the entry of the 614G subtype into host cells. Thus, SARS-CoV-2, particularly the 614G subtype, has spread more easily and with higher frequency to Europe and North America where the delC allele regulating expression of TMPRSS2 and MX1 host proteins is common, but not to East Asia where this allele is rare.

SELECTION OF CITATIONS
SEARCH DETAIL
...