Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973493

ABSTRACT

The electrocatalytic nitrate reduction reaction (NO3RR) is an ideal NH3 synthesis route with ease of operation, high energy efficiency, and low environmental detriment. Electrocatalytic cathodes play a dominant role in the NO3RR. Herein, we constructed a carbon fiber paper-supported CuOx nanoarray catalyst (CP/CuOx) by an in situ electrochemical reconstruction method for NO3--to-NH3 conversion. A series of characterization techniques, such as X-ray diffraction (XRD) and in situ Raman spectroscopy, unveil that CP/CuOx is a polycrystalline-faceted composite copper nanocatalyst with a valence composition containing Cu0, Cu+ and Cu2+. CP/CuOx shows more efficient NO3--to-NH3 conversion than CP/Cu and CP/Cu2O, which indicates that the coexistence of various Cu valence states could play a dominant role. CP/CuOx with a suitable Cu2+ content obtained by adjusting the conductivity during the in situ electrochemical reconstruction process exhibited more than 90% faradaic efficiencies for the NO3RR in a broad range of -0.3 to -1.0 V vs. RHE, 28.65 mg cm-2 h-1 peak ammonia yield, and stable NO3RR efficiencies for ten cycles. These findings suggest that CP/CuOx with suitable copper valence states obtained by fine-tuning the conductivity of the electrochemical reconstruction may provide a competitive cathode catalyst for achieving excellent activity and selectivity of NO3--to-NH3 conversion.

2.
J Adv Res ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009133

ABSTRACT

INTRODUCTION: Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood. OBJECTIVE: This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system. METHODS: 14C-labeling method and liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS) analysis were applied to clarify the bioaccumulation, distribution, and metabolism of triclosan in hydroponics-cabbage system. The distribution of differentially charged PS-MPs in cabbage was investigated by confocal laser scanning microscopy and scanning electron microscopy. RESULTS: The results showed that MPs had a significant impact on bioaccumulation and metabolism of triclosan in hydroponics-cabbage system. PS-COO-, PS, and PS-NH3+ MPs decreased the bioaccumulation of triclosan in cabbage by 69.1 %, 81.5 %, and 87.7 %, respectively, in comparison with the non-MP treatment (control). PS-MPs also reduced the translocation of triclosan from the roots to the shoots in cabbage, with a reduction rate of 15.6 %, 28.3 %, and 65.8 % for PS-COO-, PS, and PS-NH3+, respectively. In addition, PS-NH3+ profoundly inhibited the triclosan metabolism pathways such as sulfonation, nitration, and nitrosation in the hydroponics-cabbage system. The above findings might be linked to strong adsorption between PS-NH3+ and triclosan, and PS-NH3+ may also potentially inhibit the growth of cabbage. Specially, the amount of triclosan adsorbed on PS-NH3+ was significantly greater than that on PS and PS-COO-. The cabbage biomass was reduced by 76.9 % in PS-NH3+ groups, in comparison with the control. CONCLUSION: The uptake and transformation of triclosan in hydroponics-cabbage system were significantly inhibited by charged PS-MPs, especially PS-NH3+. This provides new insights into the fate of triclosan and other PPCPs coexisted with microplastics for potential risk assessments.

3.
Sci Total Environ ; 946: 173858, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876353

ABSTRACT

Increasing use and release of graphene nanomaterials and pharmaceutical and personal care products (PPCPs) in soil environment have polluted the environment and posed high ecological risks. However, little is understood about the interactive effects and mechanism of graphene on the behaviors of PPCPs in soil. In the present study, the effects of reduced graphene oxide nanomaterials (RGO) on the fate of triclosan in two typical soils (S1: silty loam; S2: silty clay loam) were investigated with 14C-triclosan, high-resolution mass spectrometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and microbial community structure analysis. The results showed that RGO prolonged the half-life of triclosan by 23.6-51.3 %, but delayed the formation of transformed products such as methyl triclosan and dechlorinated dimer of triclosan in the two typical soils. Mineralization of triclosan to 14CO2 was inhibited by 48.2-79.3 % in 500 mg kg-1 RGO in comparison with that in the control, whereas the bound residue was 54.2-56.4 % greater than the control. RGO also reduced the relative abundances of triclosan-degrading bacteria (Pseudomonas and Sphingomonas) in soils. Compared to silty loam, RGO more effectively inhibited triclosan degradation in silty clay loam. Furthermore, the DFT calculations suggested a strong association of the adsorption of triclosan on RGO with the van der Waals forces and π-π interactions. These results revealed that RGO inhibited the transformation of 14C-triclosan in soil through strong adsorption and triclosan-degrading bacteria inhibition in soils. Therefore, the presence of RGO may potentially enhance persistence of triclosan in soil. Overall, our study provides valuable insights into the risk assessment of triclosan in the presence of GNs in soil environment.

4.
J Hazard Mater ; 467: 133748, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38350319

ABSTRACT

Microplastics (MPs) and pesticides commonly exist in the environment, yet the interactions between them and their subsequent impacts on plants remain poorly understood. Thus, this study aimed to investigate the impacts of differently charged polystyrene (PS) MPs, including PS-COO-, PS and PS-NH3+ MPs, on the fate of 14C-labelled new antiviral pesticide Dufulin (DFL) in a hydroponic tomato system. The results showed that MPs greatly reduced the growth of tomato plants, with suppression of 18.4-30.2%. Compared to the control group, PS-COO-, PS and PS-NH3+ MPs also reduced the bioaccumulation of DFL in whole tomato plants by 40.3%, 34.5%, and 26.1%, respectively. Furthermore, MPs influenced the translocation of DFL in plant tissues, and the values decreased at the rates of 38.7%, 26.5% and 15.7% for PS-COO-, PS and PS-NH3+, respectively. Interestingly, compared to the control group, PS-COO- exhibited a profound inhibitory effect on DFL concentrations in tomatoes, potentially resulting in a lower dietary risk in the hydroponic tomato system. This may be due to the strong adsorption between PS-COO- and DFL, and PS-COO- may also inhibit the growth of tomato plants. Overall, our study could provide valuable insights into the risk assessment of DFL in the presence of MPs in plant systems.


Subject(s)
Benzothiazoles , Pesticides , Solanum lycopersicum , Biological Availability , Microplastics/toxicity , Plastics , Polystyrenes
5.
Food Chem X ; 20: 100904, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37817988

ABSTRACT

This study investigated the effect of electron beam irradiation (EBI) on the lipid stability of oat and barley during long-term storage. Results showed that the initial free fatty acid content in oat was higher than that in barley. This may mean that lipid hydrolysis started under the function of lipase when oat and barley were milled into flours. Both storage and EBI factors influenced lipid-degrading enzyme activity and promoted lipid oxidation in oat and barley. However, it seemed that storage had higher impacts because the DPPH scavenging activity decreased greatly, and the contents of both malondialdehyde and volatile lipid oxidation products increased in all samples. Thus, the antioxidant capacity and level of lipid oxidation after EBI treatment should be considered when producing oat and barley foods. Overall, this study shows the high potential of EBI for use as a non-thermal technique in stabilising the storage quality of oat and barley.

6.
Chemosphere ; 307(Pt 4): 136125, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995201

ABSTRACT

Reduced graphene oxide (RGO) is one of common carbon nanomaterials, which is widely used in various fields. Triclosan is an antimicrobial agent added in pharmaceuticals and personal care products. Extensive release of RGO and triclosan has posed potential risks to humans and the environment. The impact of RGO on the fate of triclosan in paddy soil is poorly known. 14C-Triclosan was employed in the present study to determine its distribution, degradation and mineralization in paddy soil mixed with RGO. Compared with the control, RGO (500 mg kg-1) significantly inhibited the mineralization of 14C-triclosan, and reduced its extractability by 6.5%. The bound residues of triclosan in RGO-contaminated soil (100 and 500 mg kg-1) were 2.9-13.3% greater than that of the control at 112 d. RGO also accelerated the dissipation of triclosan, and its degradation products in both treatments and controls were tentatively identified via 14C-labeling method and LC-Q-TOF-MS analysis. The concentrations of the major metabolites (methyl-triclosan and dechlorinated dimer) were inversely related with the concentrations of RGO. RGO at 50 mg kg-1 or lower had a negligible effect on the degradation of triclosan in paddy soil. Triclosan was strongly adsorbed onto RGO-contaminated soil, which may play a vital role in the fate of triclosan in RGO-contaminated paddy soil. Interestingly, RGO had little effect on triclosan-degrading bacteria via soil microbial community analysis. This study helps understand the effects of RGO on the transformation of triclosan in paddy soil, which is of significance to evaluate the environmental risk of triclosan in RGO-contaminated soil.


Subject(s)
Soil Pollutants , Triclosan , Adsorption , Carbon , Graphite , Humans , Pharmaceutical Preparations , Soil , Soil Pollutants/analysis , Triclosan/analysis
7.
Sci Total Environ ; 846: 157377, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35843335

ABSTRACT

As triclosan is used extensively as an antimicrobial agent, it inevitably enters agroecosystems, when sewage and treated wastewater are applied to agricultural fields. As a result, triclosan can be accumulated into crops and vegetables. Currently, limited information is available on the metabolism of triclosan in vegetables. In this study, the fate of 14C-triclosan in celery under a hydroponic system was investigated in a 30-day laboratory test. Most (97.7 %) of the 14C-triclosan accumulated in celery. The bioconcentration factors of triclosan were up to 3140 L kg-1 at day 30. The concentration of 14C-triclosan in roots (17.8 mg kg-1) was 57- and 127-fold higher than that in stems (0.31 mg kg-1) and leaves (0.14 mg kg-1), respectively, at day 30, suggesting a higher accumulation of triclosan in celery roots and negligible transport to stems and leaves. Moreover, triclosan, as well as its eight metabolites, was detected and identified in celery tissues and the growth medium using 14C-labelling and LC-Q-TOF-MS analysis methods. Phase I metabolites in the growth medium were from hydroxylation, dechlorination, nitration, and nitrosylation. Phase II metabolism was the major pathway in celery tissues. Monosaccharide, disaccharide, and sulfate conjugates of triclosan were putatively identified. The results represent an important step toward a better evaluation of the behavior of triclosan in vegetables, with notable implications for environmental and human risk assessments of triclosan.


Subject(s)
Apium , Triclosan , Apium/metabolism , Humans , Hydroponics , Triclosan/metabolism , Vegetables/metabolism , Wastewater/analysis
8.
Chemosphere ; 288(Pt 3): 132651, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34699880

ABSTRACT

Triclosan is a widely used biocide against microorganisms and is ubiquitously distributed in the environment. Triclosan can be accumulated into plants from soil and hydroponic media. However, little information is currently available on the comparative fate of triclosan in plants under soil and hydroponics cultivation conditions and factors governing uptake. Therefore, this study was designed to comparatively elucidate the uptake mechanism of 14C-triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) grown under different soils and hydroponics and clarify dominant uptake factors. Results showed that 77.2% of 14C were accumulated in youdonger grown in a hydroponic system, while only 1.24%-2.33% were accumulated in the two soil-planting systems. In addition, the bioconcentration factor (BCF) of 14C-triclosan in soil-plant systems was approximately 400-fold smaller than that in the hydroponics. In the soil-planting system, a strong linear correlation was found between concentrations of triclosan in soil pore water and youdonger plant (R2 > 0.85, p < 0.01) at different incubation times. Therefore, triclosan in pore water might be a good indicator to estimate its accumulation in plants and is significantly affected by soil pH, clay, and organic matter contents. The estimated average dietary intakes of triclosan for youdonger grown in hydroponic and soil-planting systems were estimated to be 1.31 ng day-1 kg-1 and 0.05-0.12 ng day-1 kg-1, respectively, much lower than the acceptable dietary intakes of triclosan (83 µg day-1 kg-1), indicating no significant human health risks from youdonger consumption. This study provided insights into uptake routes of triclosan into youdonger plants from both soil and hydroponic systems, bioavailability of triclosan in different soils, and further assessment of human exposure to triclosan from youdonger.


Subject(s)
Brassica , Soil Pollutants , Triclosan , Humans , Hydroponics , Soil , Soil Pollutants/analysis , Triclosan/analysis
9.
J Hazard Mater ; 414: 125501, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33662793

ABSTRACT

Irrigation with treated wastewater could lead to the accumulation of caffeine in agricultural fresh. Caffeine is one of the most frequently detected compounds in treated wastewater; however, little is known about its subcellular distribution and metabolism in vegetables. This study reported the uptake, subcellular distribution, and metabolism of 14C-caffeine in Chinese flowering cabbage and water spinach. The results showed that 98% of caffeine lost from solution after 768 h of cultivation. Caffeine was taken up by vegetables and most 14C-activity was accumulated in the bottom leaves. At the subcellular level, 14C-activity was mainly distributed in the organelles in root and stem cells, while in the leafy cells it was dominant in the solution. The metabolism of caffeine was investigated using LC-QTOF-MS. Caffeine underwent demethylation forming xanthine and theobromine, and mineralization to release CO2. Approximately 40.2% of the initially applied caffeine was accumulated in Chinese flowering cabbage as the parent compound (28.3%) and metabolites (11.9%), and 50.9% of the added caffeine was mineralized to CO2 after 768 h of exposure. The knowledge obtained herein is key to evaluating potential risks of caffeine present in treated wastewater, and the quality and safety of agricultural fresh produced by irrigation with treated wastewater.


Subject(s)
Caffeine , Vegetables , Agricultural Irrigation , Plant Leaves , Wastewater , Water
10.
Chemosphere ; 263: 127928, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32835975

ABSTRACT

Imidacloprid (IMI) is a widely used neonicotinoid insecticide effective against sucking and some chewing insects. Translocation and metabolism of IMI in plants are related to food safety. In this study, 14C-labeled IMI was used to investigate its translocation, transformation, radioactive IMI metabolites and possible metabolic pathways in cabbage. The amount of IMI accumulated in the edible part of cabbage accounted for 80.3-95.4% of the applied amounts by foliar application. There was a tendency to transport from edible parts to inedible parts. The proportions of extractable IMI decreased gradually from 92.4% to 83.0% in edible parts, greater than that in inedible parts over the experiment (0-19 days), while the bound residues showed an opposite trend. The half-life of IMI was determined as 33.0 and 63.0 days in the edible parts and whole plant, respectively. Five radioactive components including the parent IMI were detected by HPLC-LSC. The relative content of M1 was less than 0.01 mg kg-1, which was not required to identify according to the metabolic scheme proposed by the US Environmental Protection Agency. The metabolites N-nitro(1-6-chloro-3-pyridylmethyl)-4,5-dihydroxyimidazol-2-imine (M2), N-nitro(1-6-chloro-3-pyridylmethyl)-4/5-hydroxyimidazole-2-imine (M3) and 1/3-(1-6-chloro-3-pyridylmethyl)-2,4-imidazodione (M4) were identified by LC-QTOF-MS. The primary metabolism of IMI in cabbage included hydrolysis and oxidation. The residue level and daily intake values of IMI in cabbage were estimated to be 0.033-0.078 mg kg-1 and 9.56-20.01 ng d-1 kg-1, respectively, which were far below the maximum residue level and allowable daily intake values.


Subject(s)
Brassica/metabolism , Insecticides/metabolism , Neonicotinoids/metabolism , Nitro Compounds/metabolism , Animals , Chromatography, High Pressure Liquid , Imidazoles/metabolism
11.
Environ Pollut ; 264: 114815, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559858

ABSTRACT

Benzene kresoxim-methyl (BKM) is an important methoxyacrylate-based strobilurin fungicide widely used against various phytopathogenic fungi in crops. Uptake, translocation and accumulation of BKM in vegetables remain unknown. This study was designed to investigate uptake, translocation, and accumulation of 14C-BKM and/or its potential metabolites in Chinese flowering cabbage and water spinach. 14C-BKM can be gradually taken up to reach a maximum of 44.4% of the applied amount by Chinese flowering cabbage and 34.6% by water spinach at 32 d after application. The 14CO2 fractions released from the hydroponic plant system reached 37.8% for cabbage and 45.8% for water spinach, respectively. Concentrations of 14C in leaves, stems and roots all gradually increased as vegetables growing, with relative 44.9% (cabbage) and 26.8% (water spinach) of translocated from roots to edible leaves. In addition, 14C in leaves was mainly accumulated in the bottom leaves, which was visualized by quantitative radioautographic imaging. The bioconcentration factor of 14C ranged from 7.1 to 38.2 mL g-1 for the cabbage and from 8.6 to 24.6 mL g-1 for the water spinach. The translocation factor of BKM ranged from 0.10 to 2.04 for the cabbage and 0.10-0.46 for the water spinach throughout the whole cultivation period, indicating that the cabbage is easier to translocate BKM from roots to leaves and stems than water spinach. In addition, the daily human exposure values of BKM in both vegetables were much lower than the limited dose of 0.15 mg day-1. The results help assess potential accumulation of BMK in vegetables and potential risk.


Subject(s)
Brassica , Fungicides, Industrial/analysis , Ipomoea , Benzene , Humans , Spinacia oleracea , Strobilurins , Water
12.
Sci Total Environ ; 724: 138165, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32247135

ABSTRACT

Triclosan is an antimicrobial agent that is ubiquitously present in water, biosolids and soil. Current agricultural practices, such as irrigation with treated wastewater and soil amendment with biosolids, often cause further triclosan contamination in agricultural fields. However, the fate and crop uptake of triclosan in agrofood systems and related human exposure are still not fully understood. In the present study, 14C-triclosan was used to trace the fate and distribution of triclosan in a soil-peanut plant system. 14C-triclosan in the system maintained an excellent mass balance ranging from 92.5% to 102.7%. 14C-triclosan uptake from soil to peanut plants at the harvest stage (120 d) was only 1.02 ± 0.17% of the applied 14C. The bioconcentration factors in different tissues followed the order of roots > stems > leaves > fruits. The concentration of 14C-triclosan in peanut fruits was 0.76-0.84 µg g-1. 14C-triclosan was more easily accumulated in peanut kernels (69.2 ± 6.30%) than peanut hulls (27.5 ± 5.77%) and skin (3.28 ± 0.53%). The estimated daily intake (EDI) values suggested that peanut consumption represented a minimal risk to human health. The results of this study help to develop a better understanding of the fate of triclosan in the soil-peanut plant system and assess its environmental and human health risks.


Subject(s)
Soil Pollutants/analysis , Triclosan/analysis , Arachis , Humans , Soil , Wastewater
13.
Environ Pollut ; 220(Pt A): 400-406, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27692886

ABSTRACT

The increasing discharge of pharmaceuticals and personal care products (PPCPs) into the environment has generated serious public concern. The recent awareness of the environmental impact of this emerging class of pollutants and their potential adverse effects on human health have been documented in many reports. However, information regarding uptake and intracellular distribution of PPCPs in hydrophytes under hydroponic conditions, and potential human exposure is very limited. A laboratory experiment was conducted using 14C-labeled triclosan (TCS) to investigate uptake and distribution of TCS in six aquatic plants (water spinach, purple perilla, cress, penny grass, cane shoot, and rice), and the subcellular distribution of 14C-TCS was determined in these plants. The results showed that the uptake and removal rate of TCS from nutrient solution by hydrophytes followed the order of cress (96%) > water spinach (94%) > penny grass (87%) > cane shoot (84%) > purple perilla (78%) > rice (63%) at the end of incubation period (192 h). The range of 14C-TCS content in the roots was 94.3%-99.0% of the added 14C-TCS, and the concentrations in roots were 2-3 orders of magnitude greater than those in shoots. Furthermore, the subcellular fraction-concentration factor (3.6 × 102-2.6 × 103 mL g-1), concentration (0.58-4.47 µg g-1), and percentage (30%-61%) of 14C-TCS in organelles were found predominantly greater than those in cell walls and/or cytoplasm. These results indicate that for these plants, the roots are the primary storage for TCS, and within plant cells organelles are the major domains for TCS accumulation. These findings provide a better understanding of translocation and accumulation of TCS in aquatic plants at the cellular level, which is valuable for environmental and human health assessments of TCS.


Subject(s)
Anti-Infective Agents, Local/analysis , Hydroponics , Plants/chemistry , Triclosan/analysis , Water Pollutants, Chemical/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...