Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 360: 127394, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35640816

ABSTRACT

In this study, a quorum sensing (QS) signal molecule, 3-oxo-C12-HSL, was supplied into ΔnosZ Pseudomonas microbial electrolysis cell system for strengthening the N2O recovery from incineration leachate. The resistance for high nitrite loading was strongly improved with nitrite removal efficiency of 80.35% compared to 67.07% from the control on day 13 due to the increasing biomass through early activated QS. Higher N2O proportion in biogas (85.85% on average) was achieved in the QS early activated reactor, which indicated the better potential for N2O recovery. Bacterial community analysis showed the purity of ΔnosZ strain with the abundance of 100% in the anode chamber at the end of the operation. This was plausibly related to the increased synthesis of phenazine derivatives by the early activated QS system. These results show a more promising way for N2O recovery by a single engineering bacteria from the high nitrogen contained actual wastewater.


Subject(s)
Pseudomonas aeruginosa , Quorum Sensing , Electrolysis , Incineration , Nitrites , Nitrous Oxide
2.
Bioresour Technol ; 333: 125082, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33878502

ABSTRACT

High concentrations of nitrous oxide were recovered from partial nitrification treated leachate in a microbial electrolysis cell (MEC) inoculated with a nosZ-deficient strain of Pseudomonas aeruginosa. N2O conversion efficiencies > 90% were achieved when a potential of 0.8 V was applied to the MEC. The ΔnosZ strain was enriched in the 0.8 V MEC, but Achromobacter dominated the non-current control. Nitric oxide reductase genes were highly expressed by ΔnosZ cells growing in the 0.8 V MEC, consistent with enhanced nitrous oxide production rates. Concentrations of phenazine derivatives and transcripts from phenazine biosynthesis genes were also high in the 0.8 V MEC. Phenazine derivatives are known to act as electron shuttles, enhance biofilm formation, and help ward off competitors, thereby increasing the survivability of the ΔnosZ strain in the MEC. These results show that applied current stabilized growth of the ΔnosZ strain in the reactor and allowed it to sustainably generate high concentrations of nitrous oxide.


Subject(s)
Nitrous Oxide , Pseudomonas aeruginosa , Electrolysis , Incineration , Nitrification , Pseudomonas aeruginosa/genetics
3.
Bioresour Technol ; 297: 122371, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31753601

ABSTRACT

In this study, nitrous oxide was recovered from a lab-scale moving-bed biofilm reactor (MBBR) treating partial nitrification-treated leachate supplemented with a nosZ-deficient strain of Pseudomonas aeruginosa. Batch culture tests with the nosZ-deficient strain determined that the threshold for free nitrous acid (FNA) inhibition was 0.016 mg/L and that FNA concentrations above this threshold severely inhibited denitrification and transcription of genes from the dissimilatory nitrate reduction pathway (narG, nirS, and norB). High nitrite removal and N2O conversion efficiencies (>95%) were achieved with long-term operation of this MBBR. N2O accounted for the majority of biogas (80%) produced when the MBBR was fed partial nitrification-treated leachate with high nitrite concentrations and the drainage ratio was adjusted to 30%. Bacterial community analysis revealed that the nosZ-deficient Pseudomonas strain remained metabolically active and was primarily responsible for denitrification processes in the reactor. This study presents a promising method for N2O recovery from incineration leachate.


Subject(s)
Nitrous Oxide , Pseudomonas aeruginosa , Biofilms , Bioreactors , Denitrification , Incineration
SELECTION OF CITATIONS
SEARCH DETAIL
...