Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Life Sci Space Res (Amst) ; 41: 1-17, 2024 May.
Article in English | MEDLINE | ID: mdl-38670635

ABSTRACT

Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.


Subject(s)
Regenerative Medicine , Stem Cells , Tissue Engineering , Weightlessness , Regenerative Medicine/methods , Tissue Engineering/methods , Humans , Stem Cells/cytology , Stem Cells/physiology , Cell Differentiation , Animals , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques/methods
2.
Life Sci Space Res (Amst) ; 40: 21-34, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38245345

ABSTRACT

Microgravity is a primary challenge that need to overcome, when human travel to space. Our study provided evidence that Kupffer cells (KCs) are sensitive to simulated microgravity (SMG), and no similar research report has been found in the literature. Using transcriptome sequencing technology, it was showed that 631 genes were upregulated and 801 genes were downregulated in KCs after treatment under SMG for 3 days. The GO analysis indicated that the proliferation of KCs was affected when exposed to SMG for 3 days. CCK-8 assay confirmed that the proliferation of KCs was inhibited in the third day under the environment of SMG. Furthermore, we identified 8 key genes that affect the proliferation of KCs and predicted 2 transcription factors (TFs) that regulate the 8 key genes. Significantly, we found that microgravity could affect the expression of LMO2 and EZH2 to reduce the transcription of Racgap1, Ccna2, Nek2, Aurka, Plk1, Haus4, Cdc20, Bub1b, which resulting in the reduction in KCs proliferation. These finding suggested that the inhibition of KCs proliferation under microgravity may influence the homeostasis of liver, and LMO2 and EZH2 can be the targets in management of KCs' disturbance in the future practice of space medicine.


Subject(s)
Transcriptome , Weightlessness , Humans , Kupffer Cells , Cell Proliferation , Weightlessness Simulation , Enhancer of Zeste Homolog 2 Protein , Proto-Oncogene Proteins , Adaptor Proteins, Signal Transducing , LIM Domain Proteins/genetics
3.
Skin Res Technol ; 29(5): e13341, 2023 May.
Article in English | MEDLINE | ID: mdl-37231921

ABSTRACT

Exposure to microgravity can adversely affect the fitness of astronauts. The integrity of the skin plays a crucial role in protecting against mechanical forces and infections, fluid imbalance, and thermal dysregulation. In brief, the skin wound may cause unknown challenges to the implementation of space missions. Wound healing is a physiological process that relies on the synergistic action of inflammatory cells, extracellular matrix (ECM), and various growth factors to maintain the integrity of skin after trauma. Fibroblasts are present almost throughout the entire process of wound repair, especially in the scar formation at the endpoint of wound healing. However, there is limited knowledge about the extent to which fibroblasts are affected by the lack of gravity during wound healing. In this study, we utilized the rotary cell culture system, a ground-based facility that mimics the weightless condition, to study the alterations of L929 fibroblast cells under simulated microgravity (SMG). Our results demonstrated that the SM condition exerted negative influences on the proliferation and ECM formation of the L929 fibroblast. Whereas, the apoptosis of fibroblast was significantly upregulated upon exposure to SMG conditions. Moreover, the transforming growth factor-ß1/Smad3 (TGF-ß1/smad3) signaling pathway of L929 fibroblast related to wound repair was also altered significantly under a weightless environment. Overall, our study provided evidence that fibroblasts are strongly sensitive to SMG and elucidated the potential value of the TGF-ß1/Smad3 signaling pathway modulating wound healing in the future practice of space medicine.


Subject(s)
Transforming Growth Factor beta1 , Weightlessness , Humans , Transforming Growth Factor beta1/metabolism , Signal Transduction , Extracellular Matrix , Apoptosis , Cell Proliferation , Fibroblasts/metabolism , Smad3 Protein/metabolism
4.
Medicine (Baltimore) ; 102(19): e33698, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37171337

ABSTRACT

Hepatic macrophages are a complex population of cells that play an important role in the normal functioning of the liver and in liver diseases. Autophagy, as a maintainer of cellular homeostasis, is closely connected to many liver diseases. And its roles are not always beneficial, but manifesting as a double-edged sword. The polarization of macrophages and the activation of inflammasomes are mediated by intracellular and extracellular signals, respectively, and are important ways for macrophages to take part in a variety of liver diseases. More attention should be paid to autophagy of hepatic macrophages in liver diseases. In this review, we focus on the regulatory role of hepatic macrophages' autophagy in a variety of liver diseases; especially on the upstream regulator of polarization and inflammasomes activation of the hepatic macrophages. We believe that the autophagy of hepatic macrophages can become a potential therapeutic target for management of liver diseases.


Subject(s)
Inflammasomes , Liver Diseases , Humans , Liver Diseases/therapy , Liver , Macrophages , Autophagy
5.
Environ Pollut ; 319: 120971, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36603759

ABSTRACT

Waxy oily sludge (WOS) from petrochemical enterprises has complex components and difficult treatment. Long-term large-scale stacking has seriously threatened human health and the ecological environment. In this paper, a new rapid and effective treatment method combining dispersion and biodegradation in a semi-fluid state was developed for the WOS. The degradation mechanism of the WOS in the bioreactor was preliminarily discussed. The component analysis results showed that the compounds with large molecular weight (M ≥ 282) in the WOS accounted for more than 50%. Among all microbial consortiums, the treatment effect of the consortium FF: NY3 = 9: 1 was the best for treating the crude oil in WOS, which was significantly different from that of a single strain (p < 0.05). Under the optimal nitrogen source NH4NO3 and the concentration of rhamnolipid, the developed high-efficiency microbial consortium (FF: NY3 = 9:1) could remove 85% of the total hydrocarbon pollutants in the 20 L semi-fluid bioreactor within 9 days. The degradation characteristics of WOS components in the bioreactor showed that the developed consortium has good degradation ability for n-alkanes (about 90%), middle- (77.35%)/long-chain (72.66%) isomeric alkanes, alkenes (79.12%), alicyclic hydrocarbons (78.9%) and aromatic hydrocarbons (62.78%). The kinetic analysis results indicated that, in comparison, the middle-chain n-alkanes, middle-chain isomeric saturated alkanes, alkenes, and alicyclic hydrocarbons were most easily removed. The removal rates of long-chain n-alkanes, long-chain isomeric saturated alkanes, and aromatic hydrocarbons were relatively low. The biological toxicity test showed that the germination rate of wheat seeds in treated waxy sludge was Significantly higher than that in untreated waxy sludge (p < 0.01). These results suggest that the new method developed in this paper can treat refractory WOS quickly and effectively. This method lays the foundation for the pilot-scale treatment of the semi-fluid bioreactor.


Subject(s)
Petroleum , Sewage , Humans , Kinetics , Oils , Hydrocarbons/analysis , Alkanes/metabolism , Biodegradation, Environmental , Petroleum/analysis , Alkenes
6.
Bioresour Technol ; 347: 126377, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34801719

ABSTRACT

Phenols and petroleum hydrocarbons were the main contributors to COD in semi-coking wastewater, and their removal was urgent and worthwhile. The microbial strains were selected to construct microbial community for the wastewater treatment. The concentration of phenols was decreased from 2450 ± 1.2 mg/L to 200 ± 0.9 mg/L, and the removal rate of petroleum hydrocarbons was up to 97.08 ± 0.09 % by microorganisms. After phenolic compounds with high toxicity were removed by bioaugmentation, the treated semi-coking wastewater was more biodegradable, and its water quality has been significantly improved. Through GC-MS and high-through sequencing technology, the metabolic division of labor in degradation of phenols, ring-cleavage of aromatic compounds, mineralization of metabolites was further revealed. The microbial community consisting of Pseudomonas stutzeri N2 and Rhodococcus qingshengii FF could effectively and simultaneously remove phenols and petroleum hydrocarbons, and these two strains possess great potential of being applied in aerobic biological treatment process of large-scale semi-coking wastewater.


Subject(s)
Coke , Petroleum , Polycyclic Aromatic Hydrocarbons , Biodegradation, Environmental , Hydrocarbons , Phenols , Polycyclic Aromatic Hydrocarbons/analysis , Wastewater
7.
J Hazard Mater ; 415: 125657, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34088178

ABSTRACT

Rhodococcus qingshengii strain FF is a soil ubiquitous strain that has a high polycyclic aromatic hydrocarbons (PAHs) biodegradation capability. In this work, phenanthrene was used as a PAH model compound. The accumulated pattern of the metabolites of phenanthrene by strain FF was investigated, and their toxicity to Vibrio fischeri, effect on microbiota diversity of farmland soil and influence on seed of wheat were evaluated. Total of 29 main intermediates were observed for the phenanthrene degradation process. Pyrogallol was the predominant accumulated metabolite, and 59% of the accumulated metabolites were oxygen-containing PAHs that have only one benzene ring. The acute toxicity assessment showed the accumulated metabolites in later phase were more toxic to Vibrio fischeri. Microbe and wheat seed response to the different stages of phenanthrene metabolites indicated pollution significantly decreased microbial richness and evenness of farmland soil and lower germinal length, root length or root number of wheat seed. These results indicated that not only the elimination of PAHs, but also the easily accumulated metabolites produced during the PAHs degradation process should be paid enough attention. The comprehensive evaluation of toxicity during the degradation process would provide useful information for the use of microbe-orientated strategies in PAHs bioremediation.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Phenanthrenes/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Rhodococcus , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity
8.
Biotechnol Prog ; 37(4): e3155, 2021 07.
Article in English | MEDLINE | ID: mdl-33871921

ABSTRACT

Yield and cost are two major factors limiting the widespread use of rhamnolipids (RLs). In the present study, waste frying oil (WFO) was used as the sole carbon source to produce environmentally friendly RLs by Pseudomonas aeruginosa NY3. The Plackett-Burman design (PBD) and Box-Behnken design (BBD) methods were used to maximize the production yield of RL. The PBD results showed that the concentrations of NaNO3 , Na2 HPO4 , and trace elements were the key factors affecting the yield of RL. Furthermore, the BBD results showed that at NaNO3 , Na2 HPO4 , and trace elements concentrations were 4.95, 0.66, and 0.64 mL/L, respectively, the average RL yield reached 9.15 ± 0.52 g/L, 1.58-fold higher than that observed before optimization. Fourier transform infrared spectroscopy (FTIR) and liquid chromatography-ion trap-time of flight mass spectrometry (LCMS-IT-TOF) were used to elucidate the diversity of RL congeners. The results showed that, after optimization, the RL congener diversity increased, and the major RL constituent was converted from di-RLs (64.04%) to mono-RLs (60.44%). These results suggested that the concentrations of the components contained in the culture medium of P. aeruginosa NY3 influenced not only the yield of RL, but also its congener distribution.


Subject(s)
Carbon , Pseudomonas aeruginosa , Culture Media , Glycolipids/chemistry , Surface-Active Agents/chemistry
9.
J Hazard Mater ; 403: 124075, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33265063

ABSTRACT

Low pH and high salinity characteristic of produced water (PW) posed a big challenge for the direct biological treatment. The immobilization of R. qingshengii strain FF, which degraded petroleum effectively under low pH, and application of immobilized R. qingshengii strain FF in treating mimic PW was studied in this work. The immobilization of R. qingshengii strain FF on the surface of polyethylene foam (PEF), one type of waste packaging materials, was optimized using the response surface methodology. Under optimum conditions, cell density of R. qingshengii strain FF immobilized on the surface of PEF reached 388 mg (cells)/g(PEF). In addition, a few factors, including hydraulic retention time (HRT), pH and salinity, were studied for treating mimic PW using immobilized R. qingshengii strain FF. The result of this study demonstrated that TPH degradation efficiency of PW by immobilized R. qingshengii strain FF reached above 90% when HRT was longer than 8 h. Weak acid and high salinity conditions only moderately decreased TPH. Asphalt, alkanes and aromatic hydrocarbon contained in petroleum can be degraded to some extent. These results indicated that immobilized R. qingshengii strain FF can be used as a highly efficient strain which could be used in biological treatment of real PW.


Subject(s)
Petroleum , Rhodococcus , Adsorption , Biodegradation, Environmental , Polyethylene , Water
10.
Environ Res ; 191: 110159, 2020 12.
Article in English | MEDLINE | ID: mdl-32898564

ABSTRACT

Application of biological methods on polycyclic aromatic hydrocarbons (PAHs) treatment is always limited by its low degradation efficiency. In this work, a catalytic oxidation pathway of phenanthrene resulted by extracellular secretions of P. aeruginosa NY3 was proposed. Results of the in vitro experiments showed that, the extracellular secretions of Pyocyanin (Pyo) and Nicotinamide Adenine Dinucleotide (NADH) acted as homogeneous catalysts because which produced H2O2, hydroxyl free radical and superoxide anion radical continuously under aerobic conditions. These produced reactive oxygen species oxidized the phenanthrene in aqueous solution, leading to the cleavage of the phenanthrene ring and the formation of phthalates products and low molecular weight metabolites (such as alkanoic acids). The ratio of BOD5/COD of phenanthrene-containing wastewaters was greatly improved after treating with Pyo and NADH. Results of the in vivo experiments showed that, pre-degradation of phenanthrene by extracellular fluid simultaneously containing Pyo and NADH, promoted cell growth of P. aeruginosa NY3, which confirmed the improvement of bioavalability of phenanthrene-containing wastewaters by the catalytic oxidation of Pyo and NADH. Further details of the free radical detection indicated that, the increase in secretion of Pyo by a bacterium was favorable to the production of H2O2 in the extracellular fluid.


Subject(s)
Phenanthrenes , Pyocyanine , Bodily Secretions , Hydrogen Peroxide , NAD
11.
J Hazard Mater ; 381: 121232, 2020 01 05.
Article in English | MEDLINE | ID: mdl-31563036

ABSTRACT

Produced water (PW) in oilfield, as the largest waste streams in the oil and gas production, has posed a huge threat to the ecosystem. In this work, an environmentally friendly and recyclable biofilms have been developed for treating PW. We discovered that the cells of P. aeruginosa NY3 could be easily immobilized on the surface of polyurethane foam (PUF). Removal efficiency of oil and suspended solids (SS) by immobilized P. aeruginosa NY3 was keeping above 80% and 76% both in a laboratory scale and a pilot scale under suitable pH. Low pH and high value of SS had negative effect on the degradation of oil and SS by P. aeruginosa NY3. Recovery test showed that, the activity of biofilms P. aeruginosa NY3 after running in a pilot scale could be recovered in 5 days. Removal ability of oil in the real PW by the recovered biofilms of P. aeruginosa NY3 was even higher than that of the freshly prepared biofilms. These results indicated that, with a simple pH adjustment, immobilized P. aeruginosa NY3 could be recycled for removing oil and SS in the raw PW resulted from oil production.


Subject(s)
Cells, Immobilized , Oil and Gas Fields , Pseudomonas aeruginosa , Waste Management/methods , Biodegradation, Environmental , Biofilms , Hydrogen-Ion Concentration , Industrial Waste , Pilot Projects , Polyurethanes , Pseudomonas aeruginosa/physiology , Salinity , Water Pollutants
12.
Water Res ; 139: 434-441, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29709800

ABSTRACT

The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as ß-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O2-), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment.


Subject(s)
Alkanes/chemistry , Free Radicals/chemistry , Phenazines/chemistry , Phenazines/metabolism , Pseudomonas aeruginosa/metabolism , Electron Spin Resonance Spectroscopy , Glutathione/chemistry , NAD/chemistry , Oxidation-Reduction
13.
Sci Rep ; 7(1): 7466, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785060

ABSTRACT

Angulin proteins are a group of evolutionally conserved type I transmembrane proteins that contain an extracellular Ig-like domain. In mammals, three angulin proteins have been identified, namely immunoglobulin-like domain containing receptor 1 (ILDR1), immunoglobulin-like domain containing receptor 2 (ILDR2), and lipolysis-stimulated lipoprotein receptor (LSR). All three proteins have been shown to localize at tight junctions (TJs) and are important for TJ formation. Mutations in ILDR1 gene have been shown to cause non-syndromic hearing loss (NSHL). In the present work, we show that ILDR1 binds to splicing factors TRA2A, TRA2B, and SRSF1, and translocates into the nuclei when the splicing factors are present. Moreover, ILDR1 affects alternative splicing of Tubulin delta 1 (TUBD1), IQ motif containing B1 (IQCB1), and Protocadherin 19 (Pcdh19). Further investigation show that ILDR2, but not LSR, also binds to the splicing factors and regulates alternative splicing. When endogenous ILDR1 and ILDR2 expression is knockdown with siRNAs in cultured cells, alternative splicing of TUBD1 and IQCB1 is affected. In conclusion, we show here that angulin proteins ILDR1 and ILDR2 are involved in alternative pre-mRNA splicing via binding to splicing factors TRA2A, TRA2B, or SRSF1.


Subject(s)
Cell Nucleus/metabolism , RNA Precursors/genetics , RNA Splicing Factors/metabolism , Receptors, Cell Surface/metabolism , Animals , COS Cells , Cadherins/genetics , Calmodulin-Binding Proteins/genetics , Chickens , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , Protein Transport , RNA Splicing , Tubulin/genetics
14.
Sci Total Environ ; 575: 1423-1428, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27717568

ABSTRACT

For further understanding of the roles of small organic acids commonly produced during alkane degradation, glutaric acid was found to be effective for promoting hexadecane degradation by P. aeruginosa NY3. Our results demonstrated that the synchronous metabolism of glutaric acid could increase both the growth rates and hexadecane degradation ability of P. aeruginosa NY3. Glutaric acid was proved to be able to increase the ratios of the concentrations of NAD+ and NADH inside strain NY3 cells, and subsequently accelerated cell growth rates through improving electron respiration rates. All the results of the activities of hexadecane monooxygenase, the expression levels of alkB1 and alkB2 gens and the bioconversion rate of hexadecane to 1-hexadecanol were confirmed that coexistence of glutaric acid could greatly increase the reaction rate of the first step of enzymeticlly degradation of hexadecane into hexadecanol. This also explained the promotion mechanism of glutaric acid on hexadecane degradation by P. aeruginosa strain from a certain point of view for the first time.


Subject(s)
Alkanes/metabolism , Glutarates/chemistry , Pseudomonas aeruginosa/metabolism
15.
Neural Plast ; 2016: 8580675, 2016.
Article in English | MEDLINE | ID: mdl-27867666

ABSTRACT

Protocadherin 15 (PCDH15) is a core component of hair cell tip-links and crucial for proper function of inner ear hair cells. Mutations of PCDH15 gene cause syndromic and nonsyndromic hearing loss. At present, the regulatory mechanisms responsible for the intracellular transportation of PCDH15 largely remain unknown. Here we show that PIST, a Golgi-associated, PDZ domain-containing protein, interacts with PCDH15. The interaction is mediated by the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI) of PCDH15. Through this interaction, PIST retains PCDH15 in the trans-Golgi network (TGN) and reduces the membrane expression of PCDH15. We have previously showed that PIST regulates the membrane expression of another tip-link component, cadherin 23 (CDH23). Taken together, our finding suggests that PIST regulates the intracellular trafficking and membrane targeting of the tip-link proteins CDH23 and PCDH15.


Subject(s)
Cadherins/metabolism , Carrier Proteins/physiology , Cell Membrane/metabolism , Golgi Apparatus/metabolism , Membrane Proteins/physiology , Protein Precursors/metabolism , Adaptor Proteins, Signal Transducing , Animals , COS Cells , Cadherin Related Proteins , Cadherins/genetics , Cell Membrane/genetics , Chickens , Chlorocebus aethiops , Golgi Apparatus/genetics , Golgi Matrix Proteins , HEK293 Cells , Humans , Membrane Transport Proteins , Mice , Protein Binding/physiology , Protein Precursors/genetics , Protein Transport/physiology
16.
Front Med ; 10(3): 250-7, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27376950

ABSTRACT

Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca(2+)-activated K(+) channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.


Subject(s)
Alternative Splicing , Cadherins/genetics , Cochlea/physiology , Hair Cells, Auditory, Inner/metabolism , Potassium Channels, Calcium-Activated/genetics , Animals , Cadherins/physiology , Chickens , Hearing Loss/genetics , Humans , Male , Mice , Potassium Channels, Calcium-Activated/physiology , Turtles
17.
J Environ Manage ; 173: 34-40, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26963906

ABSTRACT

To explore the potential of Pseudomonas aeruginosa NY3 for the treatment of highly concentrated crude oil-contaminated water, the immobilization of strain NY3 on the surface of polyurethane foam (PUF), the conditions for using these biofilms and the possibility of recovering the used biofilms were studied. The results demonstrated that the biofilm formation process for strain NY3 was quick and easy. Under optimum conditions, the biomass immobilized on the PUF surface could reach 488.32 mg dry cell/g dry PUF. The results demonstrated that when the degradation time was 12 h, the average oil removal rate in 2 g crude oil/L contaminated water was approximately 90% for 40d. Meanwhile, the biofilms could be recovered for reuse. The recovery ability and the high and steady oil removal rate facilitated the application of the biofilms for the removal of concentrated oil from wastewater.


Subject(s)
Biofilms , Hydrocarbons/isolation & purification , Petroleum , Pseudomonas aeruginosa/metabolism , Wastewater/chemistry , Biodegradation, Environmental , Cells, Immobilized , Culture Media/chemistry , Hydrogen-Ion Concentration , Polyurethanes/chemistry , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...