Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Hum Vaccin Immunother ; 20(1): 2343192, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745409

ABSTRACT

To summarize the distribution of types of human papillomavirus (HPV) associated with HPV-related diseases and investigate the potential causes of high prevalence of HPV 52 and 58 by summarizing the prevalence of lineages, sub-lineages, and mutations among Chinese women. We searched PubMed, EMBASE, CNKI, and WanFang from January, 2012 to June, 2023 to identify all the eligible studies. We excluded patients who had received HPV vaccinations. Data were summarized in tables and cloud/rain maps. A total of 102 studies reporting HPV distribution and 15 studies reporting HPV52/HPV58 variants were extracted. Among Chinese women, the top five prevalent HPV types associated with cervical cancer (CC) were HPV16, 18, 58, 52, and 33. In patients with vaginal cancers and precancerous lesions, the most common HPV types were 16 and 52 followed by 58. For women with condyloma acuminatum (CA), the most common HPV types were 11 and 6. In Chinese women with HPV infection, lineage B was the most prominently identified for HPV52, and lineage A was the most common for HPV58. In addition to HPV types 16, which is prevalent worldwide, our findings revealed the unique high prevalence of HPV 52/58 among Chinese women with HPV-related diseases. HPV 52 variants were predominantly biased toward lineage B and sub-lineage B2, and HPV 58 variants were strongly biased toward lineage A and sub-lineage A1. Further investigations on the association between the high prevalent lineage and sub-lineage in HPV 52/58 and the risk of cancer risk are needed. Our findings underscore the importance of vaccination with the nine-valent HPV vaccine in China.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , China/epidemiology , Prevalence , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/epidemiology , Papillomaviridae/genetics , Papillomaviridae/classification , Genotype , Vaginal Neoplasms/virology , Vaginal Neoplasms/epidemiology , Condylomata Acuminata/virology , Condylomata Acuminata/epidemiology
2.
iScience ; 27(6): 109941, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38812543

ABSTRACT

The intact proviral DNA assay (IPDA) based on droplet digital PCR was developed to identify intact proviral DNA and quantify HIV-1 latency reservoirs in patients infected with HIV-1. However, the genetic characteristics of different HIV-1 subtypes are non-consistent due to their high mutation and recombination rates. Here, we identified that the IPDA based on the sequences features of an HIV-1 subtype could not effectively detect different HIV-1 subtypes due to the high diversity of HIV-1. Furthermore, we demonstrated that mutations in env gene outside the probe binding site affect the detection efficiency of IPDA. Since mutations in env gene outside the probe binding site may also lead to the formation of stop codons, thereby preventing the formation of viruses and ultimately overestimating the number of HIV-1 latency reservoirs, it is important to address the effect of mutations on the IPDA.

3.
Vaccines (Basel) ; 12(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38793805

ABSTRACT

Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.

4.
Front Microbiol ; 15: 1372069, 2024.
Article in English | MEDLINE | ID: mdl-38577684

ABSTRACT

Introduction: Hepatitis E virus (HEV), with heightened virulence in immunocompromised individuals and pregnant women, is a pervasive threat in developing countries. A globaly available vaccine against HEV is currently lacking. Methods: We designed a multi-epitope vaccine based on protein ORF2 and ORF3 of HEV using immunoinformatics. Results: The vaccine comprised 23 nontoxic, nonallergenic, soluble peptides. The stability of the docked peptide vaccine-TLR3 complex was validated by molecular dynamic simulations. The induction of effective cellular and humoral immune responses by the multi-peptide vaccine was verified by simulated immunization. Discussion: These findings provide a foundation for future HEV vaccine studies.

5.
MedComm (2020) ; 5(4): e517, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525106

ABSTRACT

Regarding the extensive global attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that constitutes an international public health emergency, pseudovirus neutralization assays have been widely applied due to their advantages of being able to be conducted in biosafety level 2 laboratories and having a high safety factor. In this study, by adding a blue fluorescent protein (AmCyan) gene to the HIV system pSG3-△env backbone plasmid HpaI and truncating the C-terminal 21 amino acids of the SARS-CoV-2 spike protein (S), high-titer SARS-CoV-2-Sdel21-AmCyan fluorescent pseudovirus was successfully packaged. The fluorescent pseudovirus was used to establish a neutralization assay in a 96-well plate using 293T cells stably transfected with the AF cells. Then, parameters such as the ratio of backbone and membrane plasmid, sensitive cells, inoculation of cells and virus, as well as incubation and detection time were optimized. The pseudovirus neutralization assay demonstrated high accuracy, sensitivity, repeatability, and a strong correlation with the luminescent pseudovirus neutralization assay. Additionally, we scaled up the neutralizing antibody determination method by increasing the plate size from 96 wells to 384 wells. We have established a robust fluorescent pseudotyped virus neutralization assay for SARS-CoV-2 using the HIV system, providing a foundation for serum neutralization antibody detection, monoclonal antibody screening, and vaccine development.

6.
J Med Virol ; 96(1): e29314, 2024 01.
Article in English | MEDLINE | ID: mdl-38163276

ABSTRACT

SARS-CoV-2 breakthrough infections in vaccinated individuals underscore the threat posed by continuous mutating variants, such as Omicron, to vaccine-induced immunity. This necessitates the search for broad-spectrum immunogens capable of countering infections from such variants. This study evaluates the immunogenicity relationship among SARS-CoV-2 variants, from D614G to XBB, through Guinea pig vaccination, covering D614G, Alpha, Beta, Gamma, Delta, BA.1, BA.2, BA.2.75, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB, employing three immunization strategies: three-dose monovalent immunogens, three-dose bivalent immunogens, and a two-dose vaccination with D614G followed by a booster immunization with a variant strain immunogen. Three distinct immunogenicity clusters were identified: D614G, Alpha, Beta, Gamma, and Delta as cluster 1, BA.1, BA.2, and BA.2.75 as cluster 2, BA.2.75.2, BA.5, BF.7, BQ.1.1, and XBB as cluster 3. Broad-spectrum protection could be achieved through a combined immunization strategy using bivalent immunogens or D614G and XBB, or two initial D614G vaccinations followed by two XBB boosters. A comparison of neutralizing antibody levels induced by XBB boosting and equivalent dosing of D614G and XBB revealed that the XBB booster produced higher antibody levels. The study suggests that vaccine antigen selection should focus on the antigenic alterations among variants, eliminating the need for updating vaccine components for each variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Guinea Pigs , SARS-CoV-2/genetics , COVID-19/prevention & control , Antibodies, Neutralizing , Cluster Analysis , Vaccines, Combined , Antibodies, Viral
8.
Emerg Microbes Infect ; 12(2): e2261566, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37727107

ABSTRACT

ABSTRACTThe global outbreak of COVID-19 has caused a severe threat to human health; therefore, simple, high-throughput neutralization assays are desirable for developing vaccines and drugs against COVID-19. In this study, a high-titre SARS-CoV-2 pseudovirus was successfully packaged by truncating the C-terminus of the SARS-CoV-2 spike protein by 21 amino acids and infecting 293 T cells that had been stably transfected with the angiotensin-converting enzyme 2 (ACE2) receptor and furin (named AF cells), to establish a simple, high-throughput, and automated 384-well plate neutralization assay. The method was optimized for cell amount, virus inoculation, incubation time, and detection time. The automated assay showed good sensitivity, accuracy, reproducibility, Z' factor, and a good correlation with the live virus neutralization assay. The high-throughput approach would make it available for the SARS-CoV-2 neutralization test in large-scale clinical trials and seroepidemiological surveys which would aid the accelerated vaccine development and evaluation.


Subject(s)
COVID-19 , Vesicular Stomatitis , Animals , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Reproducibility of Results , Viral Pseudotyping , Antibodies, Viral , Spike Glycoprotein, Coronavirus , Vesicular stomatitis Indiana virus/genetics , Neutralization Tests/methods
9.
Vaccines (Basel) ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37514949

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains widely pandemic around the world. Animal models that are sensitive to the virus are therefore urgently needed to evaluate potential vaccines and antiviral agents; however, SARS-CoV-2 requires biosafety level 3 containment. To overcome this, we developed an animal model using the intranasal administration of SARS-CoV-2 pseudovirus. As the pseudovirus contains the firefly luciferase reporter gene, infected tissues and the viral load could be monitored by in vivo bioluminescent imaging. We used the model to evaluate the protective efficacy of monoclonal antibodies and the tissue tropism of different variants. The model may also be a useful tool for the safe and convenient preliminary evaluation of the protective efficacy of vaccine candidates against SARS-CoV-2, as well as the treatment efficacy of anti-viral drugs.

10.
Emerg Microbes Infect ; 12(2): 2225638, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37313604

ABSTRACT

From December 2022 to January 2023, SARS-CoV-2 infections caused by BA.5 and BF.7 subvariants of B.1.1.529 (Omicron) spread in China. It is urgently needed to evaluate the protective immune responses in the infected individuals against the current circulating variants to predict the future potential infection waves, such as the BQ.1.1, XBB.1.5, and CH1.1 variants. In this study, we constructed a panel of pseudotyped viruses for SARS-CoV-2 for the past and current circulating variants, including D614G, Delta, BA.1, BA.5, BF.7, BQ.1.1, XBB.1.5 and CH.1.1. We investigated the neutralization sensitivity of these pseudotyped viruses to sera from individuals who had BA.5 or BF.7 breakthrough infections in the infection wave of last December in China. The mean neutralization ID50 against infected variants BA.5 and BF.7 are 533 and 444, respectively. The highest neutralizing antibody level was observed when tested against the D614G strain, with the ID50 of 742, which is about 1.52-folds higher than that against the BA.5/BF.7 variant. The ID50 for BA.1, Delta, and BQ.1.1 pseudotyped viruses were about 2-3 folds lower when compared to BA.5/BF.7. The neutralization activities of these serum samples against XBB.1.5 and CH.1.1 decreased 7.39-folds and 15.25-folds when compared to that against BA.5/BF.7. The immune escape capacity of these two variants might predict new infection waves in future when the neutralizing antibody levels decrease furtherly.


Subject(s)
Breakthrough Infections , COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , China/epidemiology , Antibodies, Viral
11.
Appl Opt ; 62(13): 3387-3397, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37132839

ABSTRACT

The extraction of the center of a laser stripe is a key step in line-structure measurement, where noise interference and changes in the surface color of an object are the main factors affecting extraction accuracy. To obtain sub-pixel level center coordinates under such non-ideal conditions, we propose LaserNet, a novel deep learning-based algorithm, to the best of our knowledge, which consists of a laser region detection sub-network and a laser position optimization sub-network. The laser region detection sub-network is used to determine potential stripe regions, and the laser position optimization sub-network uses the local image of these regions to obtain the accurate center position of the laser stripe. The experimental results show that LaserNet can eliminate noise interference, handle color changes, and give accurate results under non-ideal conditions. The three-dimensional reconstruction experiments further demonstrate the effectiveness of the proposed method.

12.
Front Immunol ; 14: 1142394, 2023.
Article in English | MEDLINE | ID: mdl-37006275

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) variants has been associated with the transmission and pathogenicity of COVID-19. Therefore, exploring the optimal immunisation strategy to improve the broad-spectrum cross-protection ability of COVID-19 vaccines is of great significance. Herein, we assessed different heterologous prime-boost strategies with chimpanzee adenovirus vector-based COVID-19 vaccines plus Wuhan-Hu-1 (WH-1) strain (AdW) and Beta variant (AdB) and mRNA-based COVID-19 vaccines plus WH-1 strain (ARW) and Omicron (B.1.1.529) variant (ARO) in 6-week-old female BALB/c mice. AdW and AdB were administered intramuscularly or intranasally, while ARW and ARO were administered intramuscularly. Intranasal or intramuscular vaccination with AdB followed by ARO booster exhibited the highest levels of cross-reactive IgG, pseudovirus-neutralising antibody (PNAb) responses, and angiotensin-converting enzyme-2 (ACE2)-binding inhibition rates against different 2019-nCoV variants among all vaccination groups. Moreover, intranasal AdB vaccination followed by ARO induced higher levels of IgA and neutralising antibody responses against live 2019-nCoV than intramuscular AdB vaccination followed by ARO. A single dose of AdB administered intranasally or intramuscularly induced broader cross-NAb responses than AdW. Th1-biased cellular immune response was induced in all vaccination groups. Intramuscular vaccination-only groups exhibited higher levels of Th1 cytokines than intranasal vaccination-only and intranasal vaccination-containing groups. However, no obvious differences were found in the levels of Th2 cytokines between the control and all vaccination groups. Our findings provide a basis for exploring vaccination strategies against different 2019-nCoV variants to achieve high broad-spectrum immune efficacy.


Subject(s)
COVID-19 , Viral Vaccines , Female , Humans , Animals , Mice , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , RNA, Messenger , Immunization , Vaccination , Antibodies, Neutralizing , Immunity, Cellular
13.
J Colloid Interface Sci ; 643: 47-61, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37044013

ABSTRACT

Exfoliating bulk graphite phase carbon nitride (g-C3N4) into 2D nanosheets is considered to be an effective method to enhance its photocatalytic activity. However, optical absorption capacity of the exfoliated g-C3N4 nanosheets are lower than that of the original bulk g-C3N4 due to the quantum size effect. Here, the ultrathin graphite phase carbon nitride nanosheets containing both carbon vacancy and cyano group (UCNS580) were prepared by two-step calcination in air with the assistance of KOH. The formation and position of carbon vacancy and cyano group were first investigated and determined. The simultaneous introduction of carbon vacancy and cyano group not only improved light absorption range and intensity of g-C3N4 nanosheets, but also more importantly constructed a fast transfer channel for photogenerated electrons, further enhancing the separation efficiency and migration ability of photogenerated carriers. The cyano group as the accumulation center of photogenerated electrons and the oxygen adsorption center increased the proportion of one-step two-electrons reaction path to efficiently generate H2O2. As a result, UCNS580 exhibited highly boosted H2O2 generation activity, its H2O2 production yield for 6 h reached 939 µmol/L and the formation rate was up to 4167 µM h-1 g-1, which was in priority in the reported literature under the same conditions.

14.
Adv Exp Med Biol ; 1407: 29-44, 2023.
Article in English | MEDLINE | ID: mdl-36920690

ABSTRACT

Pseudotyped viruses are more and more widely used in virus research and the evaluation of antiviral products because of their high safety, simple operation, high accessibility, ease in achieving standardization, and high throughput. The development of measures based on pseudotyped virus is closely related to the characteristics of viruses, and it is also necessary to follow the principles of assay development. Only in the process of method development, where the key parameters that affect the results are systematically optimized and the preliminary established method is fully validated, can the accuracy, reliability, and repeatability of the test results be ensured. Only the method established on this basis can be transferred to different laboratories and make the results of different laboratories comparable. This paper summarizes the specific aspects and general principles in the development of assays based on pseudotyped virus, which is of reference value for the development of similar methods.


Subject(s)
Antiviral Agents , Viral Pseudotyping , Reproducibility of Results , Reference Values
15.
Adv Exp Med Biol ; 1407: 1-27, 2023.
Article in English | MEDLINE | ID: mdl-36920689

ABSTRACT

Pseudotyped viruses have been constructed for many viruses. They can mimic the authentic virus and have many advantages compared to authentic viruses. Thus, they have been widely used as a surrogate of authentic virus for viral function analysis, detection of neutralizing antibodies, screening viral entry inhibitors, and others. This chapter reviewed the progress in the field of pseudotyped viruses in general, including the definition and the advantages of pseudotyped viruses, their potential usage, different strategies or vectors used for the construction of pseudotyped viruses, and factors that affect the construction of pseudotyped viruses.


Subject(s)
Viral Envelope Proteins , Viral Pseudotyping , Viral Envelope Proteins/genetics , Antibodies, Neutralizing , Virus Internalization , Genetic Vectors/genetics
16.
Adv Exp Med Biol ; 1407: 85-103, 2023.
Article in English | MEDLINE | ID: mdl-36920693

ABSTRACT

Papillomavirus is difficult to culture in vitro, which limits its related research. The development of pseudotyped virus technology provides a valuable research tool for virus infectivity research, vaccine evaluation, infection inhibitor evaluation, and so on. Depending on the application fields, different measures have been developed to generate various kinds of pseudotyped papillomavirus. L1-based and L2-based HPV vaccines should be evaluated using different pseudotyped virus system. Pseudotyped papillomavirus animal models need high-titer pseudotyped virus and unique handling procedure to generate robust results. This paper reviewed the development, optimization, standardization, and application of various pseudotyped papillomavirus methods.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Papillomavirus Vaccines , Animals , Capsid Proteins/genetics , Oncogene Proteins, Viral/genetics , Viral Pseudotyping , Papillomavirus Vaccines/genetics , Papillomavirus Vaccines/therapeutic use , Papillomavirus Infections/prevention & control , Antibodies, Viral , Papillomaviridae/genetics
17.
Adv Exp Med Biol ; 1407: 133-151, 2023.
Article in English | MEDLINE | ID: mdl-36920695

ABSTRACT

Seven coronaviruses have been identified that can infect humans, four of which usually cause mild symptoms, including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, three of which are lethal coronaviruses, named severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2. Pseudotyped virus is an important tool in the field of human coronavirus research because it is safe, easy to prepare, easy to detect, and highly modifiable. In addition to the application of pseudotyped viruses in the study of virus infection mechanism, vaccine, and candidate antiviral drug or antibody evaluation and screening, pseudotyped viruses can also be used as an important platform for further application in the prediction of immunogenicity and antigenicity after virus mutation, cross-species transmission prediction, screening, and preparation of vaccine strains with better broad spectrum and antigenicity. Meanwhile, as clinical trials of various types of vaccines and post-clinical studies are also being carried out one after another, the establishment of a high-throughput and fully automated detection platform based on SARS-CoV-2 pseudotyped virus to further reduce the cost of detection and manual intervention and improve the efficiency of large-scale detection is also a demand for the development of SARS-CoV-2 pseudotyped virus.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Middle East Respiratory Syndrome Coronavirus , Humans , Viral Pseudotyping , SARS-CoV-2/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Coronavirus 229E, Human/genetics
19.
Lancet Infect Dis ; 22(12): 1756-1768, 2022 12.
Article in English | MEDLINE | ID: mdl-36037823

ABSTRACT

BACKGROUND: This Escherichia coli-produced bivalent HPV 16 and 18 vaccine was well tolerated and effective against HPV 16 and 18 associated high-grade genital lesions and persistent infection in interim analysis of this phase 3 trial. We now report data on long-term efficacy and safety after 66 months of follow-up. METHODS: This phase 3, double-blind, randomised, controlled trial was done in five study sites in China. Eligible participants were women aged 18-45 years, with intact cervix and 1-4 lifetime sexual partners. Women who were pregnant or breastfeeding, had chronic disease or immunodeficiency, or had HPV vaccination history were excluded. Women were stratified by age (18-26 and 27-45 years) and randomly (1:1) allocated by software (block randomisation with 12 codes to a block) to receive three doses of the E coli-produced HPV 16 and 18 vaccine or hepatitis E vaccine (control) and followed-up for 66 months. The primary outcomes were high-grade genital lesions and persistent infection (longer than 6 months) associated with HPV 16 or 18 in the per-protocol susceptible population. This trial was registered with ClinicalTrials.gov, NCT01735006. FINDINGS: Between Nov 22, 2012, and April 1, 2013, 8827 women were assessed for eligibility. 1455 women were excluded, and 7372 women were enrolled and randomly assigned to receive the HPV vaccine (n=3689) or control (n=3683). Vaccine efficacy was 100·0% (95% CI 67·2-100·0) against high-grade genital lesions (0 [0%] of 3310 participants in the vaccine group and 13 [0·4%] of 3302 participants in the control group) and 97·3% (89·9-99·7) against persistent infection (2 [0·1%] of 3262 participants in the vaccine group and 73 [2·2%] of 3271 participants in the control group) in the per-protocol population. Serious adverse events occurred at a similar rate between vaccine (267 [7·2%] of 3691 participants) and control groups (290 [7·9%] of 3681); none were considered related to vaccination. INTERPRETATION: The E coli-produced HPV 16 and 18 vaccine was well tolerated and highly efficacious against HPV 16 and 18 associated high-grade genital lesions and persistent infection and would supplement the global HPV vaccine availability and accessibility for cervical cancer prevention. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Fujian Provincial Project, Fundamental Funds for the Central Universities, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and Xiamen Innovax.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Vaccines, Virus-Like Particle , Female , Humans , Male , Escherichia coli , Uterine Cervical Neoplasms/prevention & control , Human papillomavirus 16 , Double-Blind Method , Immunogenicity, Vaccine
20.
Signal Transduct Target Ther ; 7(1): 256, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896529

ABSTRACT

A steep rise in Omicron reinfection cases suggests that this variant has increased immune evasion ability. To evaluate its antigenicity relationship with other variants, antisera from guinea pigs immunized with spike protein of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) were cross-tested against pseudotyped variants. The neutralization activity against Omicron was markedly reduced when other VOCs or VOIs were used as immunogens, and Omicron (BA.1)-elicited sera did not efficiently neutralize the other variants. However, a Beta or Omicron booster, when administered as the 4th dose 3-months after the 3rd dose of any of the variants, could elicit broad neutralizing antibodies against all of the current variants including Omicron BA.1. Further analysis with 280 available antigen-antibody structures and quantification of immune escape from 715 reported neutralizing antibodies provide explanations for the observed differential immunogenicity. Three distinct clades predicted using an in silico algorithm for clustering of sarbecoviruses based on immune escape provide key information for rational design of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral/genetics , COVID-19/genetics , Cluster Analysis , Guinea Pigs , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...